These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 30690707)

  • 1. Fast likelihood-based inference for latent count models using the saddlepoint approximation.
    Zhang W; Bravington MV; Fewster RM
    Biometrics; 2019 Sep; 75(3):723-733. PubMed ID: 30690707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Latent multinomial models for extended batch-mark data.
    Zhang W; Bonner SJ; McCrea RS
    Biometrics; 2023 Sep; 79(3):2732-2742. PubMed ID: 36321329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Likelihood approximation networks (LANs) for fast inference of simulation models in cognitive neuroscience.
    Fengler A; Govindarajan LN; Chen T; Frank MJ
    Elife; 2021 Apr; 10():. PubMed ID: 33821788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A weighted partial likelihood approach for zero-truncated models.
    Hwang WH; Heinze D; Stoklosa J
    Biom J; 2019 Jul; 61(4):1073-1087. PubMed ID: 31090104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Survival and hazard functions for progressive diseases using saddlepoint approximations.
    Huzurbazar S; Huzurbazar AV
    Biometrics; 1999 Mar; 55(1):198-203. PubMed ID: 11318155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian inference on age-specific survival for censored and truncated data.
    Colchero F; Clark JS
    J Anim Ecol; 2012 Jan; 81(1):139-49. PubMed ID: 21883202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Connecting the latent multinomial.
    Schofield MR; Bonner SJ
    Biometrics; 2015 Dec; 71(4):1070-80. PubMed ID: 26033530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian inference for finite mixtures of univariate and multivariate skew-normal and skew-t distributions.
    Frühwirth-Schnatter S; Pyne S
    Biostatistics; 2010 Apr; 11(2):317-36. PubMed ID: 20110247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A bayesian approach to the multistate Jolly-Seber capture-recapture model.
    Dupuis JA; Schwarz CJ
    Biometrics; 2007 Dec; 63(4):1015-22. PubMed ID: 17501941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capture-recapture analysis with a latent class model allowing for local dependence and observed heterogeneity.
    Thandrayen J; Wang Y
    Biom J; 2010 Aug; 52(4):552-61. PubMed ID: 20669247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A class of latent Markov models for capture-recapture data allowing for time, heterogeneity, and behavior effects.
    Bartolucci F; Pennoni F
    Biometrics; 2007 Jun; 63(2):568-78. PubMed ID: 17688509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Approximate maximum likelihood estimation for population genetic inference.
    Bertl J; Ewing G; Kosiol C; Futschik A
    Stat Appl Genet Mol Biol; 2017 Nov; 16(5-6):387-405. PubMed ID: 29095700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maximum likelihood estimation for model Mt,α for capture-recapture data with misidentification.
    Vale RT; Fewster RM; Carroll EL; Patenaude NJ
    Biometrics; 2014 Dec; 70(4):962-71. PubMed ID: 24942186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Open population maximum likelihood spatial capture-recapture.
    Glennie R; Borchers DL; Murchie M; Harmsen BJ; Foster RJ
    Biometrics; 2019 Dec; 75(4):1345-1355. PubMed ID: 31045249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A general class of recapture models based on the conditional capture probabilities.
    Farcomeni A
    Biometrics; 2016 Mar; 72(1):116-24. PubMed ID: 26355633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amortized Bayesian inference on generative dynamical network models of epilepsy using deep neural density estimators.
    Hashemi M; Vattikonda AN; Jha J; Sip V; Woodman MM; Bartolomei F; Jirsa VK
    Neural Netw; 2023 Jun; 163():178-194. PubMed ID: 37060871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncovering a latent multinomial: analysis of mark-recapture data with misidentification.
    Link WA; Yoshizaki J; Bailey LL; Pollock KH
    Biometrics; 2010 Mar; 66(1):178-85. PubMed ID: 19397581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Counting people with low-level features and Bayesian regression.
    Chan AB; Vasconcelos N
    IEEE Trans Image Process; 2012 Apr; 21(4):2160-77. PubMed ID: 22020684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian Comparison of Latent Variable Models: Conditional Versus Marginal Likelihoods.
    Merkle EC; Furr D; Rabe-Hesketh S
    Psychometrika; 2019 Sep; 84(3):802-829. PubMed ID: 31297664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A need for speed in Bayesian population models: a practical guide to marginalizing and recovering discrete latent states.
    Yackulic CB; Dodrill M; Dzul M; Sanderlin JS; Reid JA
    Ecol Appl; 2020 Jul; 30(5):e02112. PubMed ID: 32112492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.