These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The swaying mouse as a model of osteogenesis imperfecta caused by WNT1 mutations. Joeng KS; Lee YC; Jiang MM; Bertin TK; Chen Y; Abraham AM; Ding H; Bi X; Ambrose CG; Lee BH Hum Mol Genet; 2014 Aug; 23(15):4035-42. PubMed ID: 24634143 [TBL] [Abstract][Full Text] [Related]
3. Osteocyte-specific WNT1 regulates osteoblast function during bone homeostasis. Joeng KS; Lee YC; Lim J; Chen Y; Jiang MM; Munivez E; Ambrose C; Lee BH J Clin Invest; 2017 Jun; 127(7):2678-2688. PubMed ID: 28628032 [TBL] [Abstract][Full Text] [Related]
5. Osteoblastic Wnt1 regulates periosteal bone formation in adult mice. Wang F; Rummukainen P; Heino TJ; Kiviranta R Bone; 2021 Feb; 143():115754. PubMed ID: 33189914 [TBL] [Abstract][Full Text] [Related]
6. The role of WNT1 mutant variant (WNT1 Zhang B; Li R; Wang W; Zhou X; Luo B; Zhu Z; Zhang X; Ding A Ann Hum Genet; 2020 Nov; 84(6):447-455. PubMed ID: 32757296 [TBL] [Abstract][Full Text] [Related]
7. Osteoclast TGF-β Receptor Signaling Induces Wnt1 Secretion and Couples Bone Resorption to Bone Formation. Weivoda MM; Ruan M; Pederson L; Hachfeld C; Davey RA; Zajac JD; Westendorf JJ; Khosla S; Oursler MJ J Bone Miner Res; 2016 Jan; 31(1):76-85. PubMed ID: 26108893 [TBL] [Abstract][Full Text] [Related]
8. Multi-omics analyses reveal aberrant differentiation trajectory with WNT1 loss-of-function in type XV osteogenesis imperfecta. Tan Z; Chen P; Zhang J; Shek HT; Li Z; Zhou X; Zhou Y; Yin S; Dong L; Feng L; Wong JSH; Gao B; To MKT J Bone Miner Res; 2024 Sep; 39(9):1253-1267. PubMed ID: 39126373 [TBL] [Abstract][Full Text] [Related]
10. Wnt1 is an Lrp5-independent bone-anabolic Wnt ligand. Luther J; Yorgan TA; Rolvien T; Ulsamer L; Koehne T; Liao N; Keller D; Vollersen N; Teufel S; Neven M; Peters S; Schweizer M; Trumpp A; Rosigkeit S; Bockamp E; Mundlos S; Kornak U; Oheim R; Amling M; Schinke T; David JP Sci Transl Med; 2018 Nov; 10(466):. PubMed ID: 30404864 [No Abstract] [Full Text] [Related]
11. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Glass DA; Bialek P; Ahn JD; Starbuck M; Patel MS; Clevers H; Taketo MM; Long F; McMahon AP; Lang RA; Karsenty G Dev Cell; 2005 May; 8(5):751-64. PubMed ID: 15866165 [TBL] [Abstract][Full Text] [Related]
12. Tissue inhibitor of metalloproteinase 1 suppresses growth and differentiation of osteoblasts and differentiation of osteoclasts by targeting the AKT pathway. Xi Y; Huang H; Zhao Z; Ma J; Chen Y Exp Cell Res; 2020 Apr; 389(2):111930. PubMed ID: 32113948 [TBL] [Abstract][Full Text] [Related]
13. Aging increases stromal/osteoblastic cell-induced osteoclastogenesis and alters the osteoclast precursor pool in the mouse. Cao JJ; Wronski TJ; Iwaniec U; Phleger L; Kurimoto P; Boudignon B; Halloran BP J Bone Miner Res; 2005 Sep; 20(9):1659-68. PubMed ID: 16059637 [TBL] [Abstract][Full Text] [Related]
14. Biological effects of melatonin on osteoblast/osteoclast cocultures, bone, and quality of life: Implications of a role for MT2 melatonin receptors, MEK1/2, and MEK5 in melatonin-mediated osteoblastogenesis. Maria S; Samsonraj RM; Munmun F; Glas J; Silvestros M; Kotlarczyk MP; Rylands R; Dudakovic A; van Wijnen AJ; Enderby LT; Lassila H; Dodda B; Davis VL; Balk J; Burow M; Bunnell BA; Witt-Enderby PA J Pineal Res; 2018 Apr; 64(3):. PubMed ID: 29285799 [TBL] [Abstract][Full Text] [Related]
15. Galectin-3 as a novel regulator of osteoblast-osteoclast interaction and bone homeostasis. Simon D; Derer A; Andes FT; Lezuo P; Bozec A; Schett G; Herrmann M; Harre U Bone; 2017 Dec; 105():35-41. PubMed ID: 28822790 [TBL] [Abstract][Full Text] [Related]
16. Chitosan-Collagen 3D Matrix Mimics Trabecular Bone and Regulates RANKL-Mediated Paracrine Cues of Differentiated Osteoblast and Mesenchymal Stem Cells for Bone Marrow Macrophage-Derived Osteoclastogenesis. Elango J; Saravanakumar K; Rahman SU; Henrotin Y; Regenstein JM; Wu W; Bao B Biomolecules; 2019 May; 9(5):. PubMed ID: 31060346 [TBL] [Abstract][Full Text] [Related]
17. Phenotypic Spectrum in Osteogenesis Imperfecta Due to Mutations in TMEM38B: Unraveling a Complex Cellular Defect. Webb EA; Balasubramanian M; Fratzl-Zelman N; Cabral WA; Titheradge H; Alsaedi A; Saraff V; Vogt J; Cole T; Stewart S; Crabtree NJ; Sargent BM; Gamsjaeger S; Paschalis EP; Roschger P; Klaushofer K; Shaw NJ; Marini JC; Högler W J Clin Endocrinol Metab; 2017 Jun; 102(6):2019-2028. PubMed ID: 28323974 [TBL] [Abstract][Full Text] [Related]
18. Lrp4 in osteoblasts suppresses bone formation and promotes osteoclastogenesis and bone resorption. Xiong L; Jung JU; Wu H; Xia WF; Pan JX; Shen C; Mei L; Xiong WC Proc Natl Acad Sci U S A; 2015 Mar; 112(11):3487-92. PubMed ID: 25733894 [TBL] [Abstract][Full Text] [Related]
19. NR4A1 Regulates Motility of Osteoclast Precursors and Serves as Target for the Modulation of Systemic Bone Turnover. Scholtysek C; Ipseiz N; Böhm C; Krishnacoumar B; Stenzel M; Czerwinski T; Palumbo-Zerr K; Rothe T; Weidner D; Klej A; Stoll C; Distler J; Tuckermann J; Herrmann M; Fabry B; Goldmann WH; Schett G; Krönke G J Bone Miner Res; 2018 Nov; 33(11):2035-2047. PubMed ID: 29949664 [TBL] [Abstract][Full Text] [Related]
20. Maintenance of Bone Homeostasis by DLL1-Mediated Notch Signaling. Muguruma Y; Hozumi K; Warita H; Yahata T; Uno T; Ito M; Ando K J Cell Physiol; 2017 Sep; 232(9):2569-2580. PubMed ID: 27735989 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]