BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 30690805)

  • 1. Genotyping strategies of selection candidates in livestock breeding programmes.
    Granleese T; Clark SA; van der Werf JHJ
    J Anim Breed Genet; 2019 Mar; 136(2):91-101. PubMed ID: 30690805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing female allocation to reproductive technologies considering merit, inbreeding and cost in nucleus breeding programmes with genomic selection.
    Granleese T; Clark SA; Kinghorn BP; van der Werf JHJ
    J Anim Breed Genet; 2019 Mar; 136(2):79-90. PubMed ID: 30585664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased genetic gains in sheep, beef and dairy breeding programs from using female reproductive technologies combined with optimal contribution selection and genomic breeding values.
    Granleese T; Clark SA; Swan AA; van der Werf JH
    Genet Sel Evol; 2015 Sep; 47(1):70. PubMed ID: 26370143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic selection strategies in dairy cattle breeding programmes: Sexed semen cannot replace multiple ovulation and embryo transfer as superior reproductive technology.
    Pedersen LD; Kargo M; Berg P; Voergaard J; Buch LH; Sørensen AC
    J Anim Breed Genet; 2012 Apr; 129(2):152-63. PubMed ID: 22394237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Economic evaluation of genomic selection in small ruminants: a sheep meat breeding program.
    Shumbusho F; Raoul J; Astruc JM; Palhiere I; Lemarié S; Fugeray-Scarbel A; Elsen JM
    Animal; 2016 Jun; 10(6):1033-41. PubMed ID: 26446712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Most of the benefits from genomic selection can be realized by genotyping a small proportion of available selection candidates.
    Henryon M; Berg P; Ostersen T; Nielsen B; Sørensen AC
    J Anim Sci; 2012 Dec; 90(13):4681-9. PubMed ID: 23087087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reproductive technologies combine well with genomic selection in dairy breeding programs.
    Thomasen JR; Willam A; Egger-Danner C; Sørensen AC
    J Dairy Sci; 2016 Feb; 99(2):1331-1340. PubMed ID: 26686703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of genomic selection for replacement strategies using selection index theory.
    Calus MP; Bijma P; Veerkamp RF
    J Dairy Sci; 2015 Sep; 98(9):6499-509. PubMed ID: 26142859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating variance components and breeding values for number of oocytes and number of embryos in dairy cattle using a single-step genomic evaluation.
    Cornelissen MAMC; Mullaart E; Van der Linde C; Mulder HA
    J Dairy Sci; 2017 Jun; 100(6):4698-4705. PubMed ID: 28365120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic selection for maternal traits in pigs.
    Lillehammer M; Meuwissen TH; Sonesson AK
    J Anim Sci; 2011 Dec; 89(12):3908-16. PubMed ID: 21841086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation study on the efficiencies of MOET nucleus breeding schemes applying marker assisted selection in dairy cattle.
    Luo W; Wang Y; Zhang Y
    Sci China C Life Sci; 2009 Mar; 52(3):296-306. PubMed ID: 19294355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of selective genotyping on the response to selection using single-step genomic best linear unbiased prediction.
    Howard JT; Rathje TA; Bruns CE; Wilson-Wells DF; Kachman SD; Spangler ML
    J Anim Sci; 2018 Nov; 96(11):4532-4542. PubMed ID: 30107560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of a genomic breeding program for a moderately sized dairy cattle population.
    Reiner-Benaim A; Ezra E; Weller JI
    J Dairy Sci; 2017 Apr; 100(4):2892-2904. PubMed ID: 28189326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applied animal genomics: results from the field.
    Van Eenennaam AL; Weigel KA; Young AE; Cleveland MA; Dekkers JC
    Annu Rev Anim Biosci; 2014 Feb; 2():105-39. PubMed ID: 25384137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic selection strategies in a small dairy cattle population evaluated for genetic gain and profit.
    Thomasen JR; Egger-Danner C; Willam A; Guldbrandtsen B; Lund MS; Sørensen AC
    J Dairy Sci; 2014; 97(1):458-70. PubMed ID: 24239076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of reproductive technology to the Australian livestock industries.
    Evans G
    Reprod Fertil Dev; 1991; 3(6):627-50. PubMed ID: 1792331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genotyping strategies for genomic selection in small dairy cattle populations.
    Jiménez-Montero JA; González-Recio O; Alenda R
    Animal; 2012 Aug; 6(8):1216-24. PubMed ID: 23217224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential benefits of genomic selection on genetic gain of small ruminant breeding programs.
    Shumbusho F; Raoul J; Astruc JM; Palhiere I; Elsen JM
    J Anim Sci; 2013 Aug; 91(8):3644-57. PubMed ID: 23736059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identity-by-descent genomic selection using selective and sparse genotyping for binary traits.
    Ødegård J; Meuwissen TH
    Genet Sel Evol; 2015 Feb; 47(1):8. PubMed ID: 25888522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of selection index calculations to determine selection strategies in genomic breeding programs.
    König S; Swalve HH
    J Dairy Sci; 2009 Oct; 92(10):5292-303. PubMed ID: 19762847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.