BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 30690889)

  • 1. Effect of the configuration of poly(lactic acid) and content of poly(oxyethylene) blocks to the structure and functional properties of poly(lactic acid)-block-poly(oxirane)-based nanofibrous electrospun polyester-ether-urethanes used as potential drug-delivery system.
    Pavelková A; Kucharczyk P; Capáková Z; Peer P; Pummerová M; Zedník J; Vohlídal J; Sedlařík V
    J Biomed Mater Res B Appl Biomater; 2019 Oct; 107(7):2378-2387. PubMed ID: 30690889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and wound healing of alternating block polyurethanes based on poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG).
    Li L; Liu X; Niu Y; Ye J; Huang S; Liu C; Xu K
    J Biomed Mater Res B Appl Biomater; 2017 Jul; 105(5):1200-1209. PubMed ID: 27059634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrospun nanofibrous scaffolds of segmented polyurethanes based on PEG, PLLA and PTMC blocks: Physico-chemical properties and morphology.
    Trinca RB; Abraham GA; Felisberti MI
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():511-7. PubMed ID: 26249621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclosporine A Loaded Electrospun Poly(D,L-Lactic Acid)/Poly(Ethylene Glycol) Nanofibers: Drug Carriers Utilizable in Local Immunosuppression.
    Sirc J; Hampejsova Z; Trnovska J; Kozlik P; Hrib J; Hobzova R; Zajicova A; Holan V; Bosakova Z
    Pharm Res; 2017 Jul; 34(7):1391-1401. PubMed ID: 28405914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrospun tetracycline hydrochloride loaded zein/gum tragacanth/poly lactic acid nanofibers for biomedical application.
    Ghorbani M; Mahmoodzadeh F; Yavari Maroufi L; Nezhad-Mokhtari P
    Int J Biol Macromol; 2020 Dec; 165(Pt A):1312-1322. PubMed ID: 33039533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The surface grafting of graphene oxide with poly(ethylene glycol) as a reinforcement for poly(lactic acid) nanocomposite scaffolds for potential tissue engineering applications.
    Zhang C; Wang L; Zhai T; Wang X; Dan Y; Turng LS
    J Mech Behav Biomed Mater; 2016 Jan; 53():403-413. PubMed ID: 26409231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled release and antibacterial activity of antibiotic-loaded electrospun halloysite/poly(lactic-co-glycolic acid) composite nanofibers.
    Qi R; Guo R; Zheng F; Liu H; Yu J; Shi X
    Colloids Surf B Biointerfaces; 2013 Oct; 110():148-55. PubMed ID: 23711785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication, characterization, and biocompatibility assessment of a novel elastomeric nanofibrous scaffold: A potential scaffold for soft tissue engineering.
    Shamirzaei Jeshvaghani E; Ghasemi-Mobarakeh L; Mansurnezhad R; Ajalloueian F; Kharaziha M; Dinari M; Sami Jokandan M; Chronakis IS
    J Biomed Mater Res B Appl Biomater; 2018 Aug; 106(6):2371-2383. PubMed ID: 29168916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and Performance of Poly(D,L-lactic acid)–Polyethylene Glycol–Poly(D,L-lactic acid) Electrospun Fibrous Membranes for Drug Release.
    Jiang D; Zhan H; Hu X; Luan J; Zhang M
    J Nanosci Nanotechnol; 2017 Feb; 17(2):884-92. PubMed ID: 29671467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel electrospun nanofibrous matrices prepared from poly(lactic acid)/poly(butylene adipate) blends for controlled release formulations of an anti-rheumatoid agent.
    Siafaka PI; Barmbalexis P; Bikiaris DN
    Eur J Pharm Sci; 2016 Jun; 88():12-25. PubMed ID: 27039136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and properties of biodegradable poly(ester-urethane)s based on poly(ε-caprolactone) and aliphatic diurethane diisocyanate for long-term implant application: effect of uniform-size hard segment content.
    Zhang L; Zhang C; Zhang W; Zhang H; Hou Z
    J Biomater Sci Polym Ed; 2019 Sep; 30(13):1212-1226. PubMed ID: 31140366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of superparamagnetic nanofibrous poly(l-lactic acid)/γ-Fe
    Qu M; Xiao W; Tian J; Wang S; Li H; Liu X; Yang X; Li B; Liao X
    J Biomed Mater Res B Appl Biomater; 2019 Apr; 107(3):511-520. PubMed ID: 29675859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic myocardial patches fabricated with poly(ɛ-caprolactone) and polyethylene glycol-based polyurethanes.
    Silvestri A; Sartori S; Boffito M; Mattu C; Di Rienzo AM; Boccafoschi F; Ciardelli G
    J Biomed Mater Res B Appl Biomater; 2014 Jul; 102(5):1002-13. PubMed ID: 24307433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characterization of electrospun poly(lactic acid)-chitosan core-shell nanofibers with a new solvent system.
    Afshar S; Rashedi S; Nazockdast H; Ghazalian M
    Int J Biol Macromol; 2019 Oct; 138():1130-1137. PubMed ID: 31299256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro and in vivo biological characterization of poly(lactic acid) fiber scaffolds synthesized by air jet spinning.
    Granados-Hernández MV; Serrano-Bello J; Montesinos JJ; Alvarez-Gayosso C; Medina-Velázquez LA; Alvarez-Fregoso O; Alvarez-Perez MA
    J Biomed Mater Res B Appl Biomater; 2018 Aug; 106(6):2435-2446. PubMed ID: 29193687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro degradation and in vivo toxicity of NanoMatrix3D
    Pogorielov M; Hapchenko A; Deineka V; Rogulska L; Oleshko O; Vodseďálková K; Berezkinová L; Vysloužilová L; Klápšťová A; Erben J
    J Biomed Mater Res A; 2018 Aug; 106(8):2200-2212. PubMed ID: 29637696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanofiber mats composed of a chitosan-poly(d,l-lactic-co-glycolic acid)-poly(ethylene oxide) blend as a postoperative anti-adhesion agent.
    Ko JE; Ko YG; Kim WI; Kwon OK; Kwon OH
    J Biomed Mater Res B Appl Biomater; 2017 Oct; 105(7):1906-1915. PubMed ID: 27286271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of collagen foam, poly(l-lactic acid) nanofiber mesh, and decellularized matrices for corneal regeneration.
    Aslan B; Guler S; Tevlek A; Aydin HM
    J Biomed Mater Res B Appl Biomater; 2018 Aug; 106(6):2157-2168. PubMed ID: 29024376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and properties of biomedical segmented polyurethanes based on poly(ether ester) and uniform-size diurethane diisocyanates.
    Yin S; Xia Y; Jia Q; Hou ZS; Zhang N
    J Biomater Sci Polym Ed; 2017 Jan; 28(1):119-138. PubMed ID: 27774855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyesterurethane and acellular matrix based hybrid biomaterial for bladder engineering.
    Horst M; Milleret V; Noetzli S; Gobet R; Sulser T; Eberli D
    J Biomed Mater Res B Appl Biomater; 2017 Apr; 105(3):658-667. PubMed ID: 26669507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.