These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 30690980)
1. Identifying and Analyzing the Diversity of Resistance Gene Analogs in Colombian Rubus Genotypes. Afanador-Kafuri L; Mejía JF; González A; Álvarez E Plant Dis; 2015 Jul; 99(7):994-1001. PubMed ID: 30690980 [TBL] [Abstract][Full Text] [Related]
2. Isolation of TIR and non-TIR NBS--LRR resistance gene analogues and identification of molecular markers linked to a powdery mildew resistance locus in chestnut rose (Rosa roxburghii Tratt). Xu Q; Wen X; Deng X Theor Appl Genet; 2005 Sep; 111(5):819-30. PubMed ID: 16075209 [TBL] [Abstract][Full Text] [Related]
3. Characterization of resistance gene analogues (RGAs) in apple (Malus × domestica Borkh.) and their evolutionary history of the Rosaceae family. Perazzolli M; Malacarne G; Baldo A; Righetti L; Bailey A; Fontana P; Velasco R; Malnoy M PLoS One; 2014; 9(2):e83844. PubMed ID: 24505246 [TBL] [Abstract][Full Text] [Related]
4. Identification of resistance gene analogs in Korean wild apple germplasm collections. Baek DE; Choi C Genet Mol Res; 2013 Feb; 12(1):483-93. PubMed ID: 23408446 [TBL] [Abstract][Full Text] [Related]
5. Isolation, genetic variation and expression of TIR-NBS-LRR resistance gene analogs from western white pine ( Pinus monticola Dougl. ex. D. Don.). Liu JJ; Ekramoddoullah AK Mol Genet Genomics; 2003 Dec; 270(5):432-41. PubMed ID: 14586641 [TBL] [Abstract][Full Text] [Related]
7. Genome survey of resistance gene analogs in sugarcane: genomic features and differential expression of the innate immune system from a smut-resistant genotype. Rody HVS; Bombardelli RGH; Creste S; Camargo LEA; Van Sluys MA; Monteiro-Vitorello CB BMC Genomics; 2019 Nov; 20(1):809. PubMed ID: 31694536 [TBL] [Abstract][Full Text] [Related]
8. Analysis of non-TIR NBS-LRR resistance gene analogs in Musa acuminata Colla: isolation, RFLP marker development, and physical mapping. Miller RN; Bertioli DJ; Baurens FC; Santos CM; Alves PC; Martins NF; Togawa RC; Souza MT; Pappas GJ BMC Plant Biol; 2008 Jan; 8():15. PubMed ID: 18234103 [TBL] [Abstract][Full Text] [Related]
9. Isolation and characterization of NBS-LRR resistance gene analogues from mango. Lei X; Yao Q; Xu X; Liu Y Biotechnol Biotechnol Equip; 2014 May; 28(3):417-424. PubMed ID: 26740762 [TBL] [Abstract][Full Text] [Related]
10. Isolation and diversity analysis of resistance gene analogues (RGAs) from cultivated and wild strawberries. Martínez Zamora MG; Castagnaro AP; Díaz Ricci JC Mol Genet Genomics; 2004 Nov; 272(4):480-7. PubMed ID: 15565466 [TBL] [Abstract][Full Text] [Related]
11. Species-specific duplications driving the recent expansion of NBS-LRR genes in five Rosaceae species. Zhong Y; Yin H; Sargent DJ; Malnoy M; Cheng ZM BMC Genomics; 2015 Feb; 16(1):77. PubMed ID: 25759136 [TBL] [Abstract][Full Text] [Related]
12. Identification and characterization of NBS-LRR class resistance gene analogs in faba bean (Vicia faba L.) and chickpea (Cicer arietinum L.). Palomino C; Satovic Z; Cubero JI; Torres AM Genome; 2006 Oct; 49(10):1227-37. PubMed ID: 17213904 [TBL] [Abstract][Full Text] [Related]
13. Diversity and evolutionary relationship of nucleotide binding site-encoding disease-resistance gene analogues in sweet potato (Ipomoea batatas Lam.). Chen G; Pan D; Zhou Y; Lin S; Ke X J Biosci; 2007 Jun; 32(4):713-21. PubMed ID: 17762144 [TBL] [Abstract][Full Text] [Related]
14. Characterization of resistance gene analogs with a nucleotide binding site isolated from a triploid white poplar. Zhang Q; Zhang ZY; Lin SZ; Zheng HQ; Lin YZ; An XM; Li Y; Li HX Plant Biol (Stuttg); 2008 May; 10(3):310-22. PubMed ID: 18426478 [TBL] [Abstract][Full Text] [Related]
15. Genome-wide identification and comparative expression analysis of NBS-LRR-encoding genes upon Colletotrichum gloeosporioides infection in two ecotypes of Fragaria vesca. Li J; Zhang QY; Gao ZH; Wang F; Duan K; Ye ZW; Gao QH Gene; 2013 Sep; 527(1):215-27. PubMed ID: 23806759 [TBL] [Abstract][Full Text] [Related]
16. Identification of non-TIR-NBS-LRR markers linked to the Pl5/ Pl8 locus for resistance to downy mildew in sunflower. Radwan O; Bouzidi MF; Vear F; Philippon J; De Labrouhe DT; Nicolas P; Mouzeyar S Theor Appl Genet; 2003 May; 106(8):1438-46. PubMed ID: 12750787 [TBL] [Abstract][Full Text] [Related]
17. Identifying resistance gene analogs associated with resistances to different pathogens in common bean. López CE; Acosta IF; Jara C; Pedraza F; Gaitán-Solís E; Gallego G; Beebe S; Tohme J Phytopathology; 2003 Jan; 93(1):88-95. PubMed ID: 18944161 [TBL] [Abstract][Full Text] [Related]
18. Nucleotide binding site/leucine-rich repeats, Pto-like and receptor-like kinases related to disease resistance in grapevine. Di Gaspero G; Cipriani G Mol Genet Genomics; 2003 Aug; 269(5):612-23. PubMed ID: 12884009 [TBL] [Abstract][Full Text] [Related]
19. The absence of TIR-type resistance gene analogues in the sugar beet (Beta vulgaris L.) genome. Tian Y; Fan L; Thurau T; Jung C; Cai D J Mol Evol; 2004 Jan; 58(1):40-53. PubMed ID: 14743313 [TBL] [Abstract][Full Text] [Related]
20. RGAugury: a pipeline for genome-wide prediction of resistance gene analogs (RGAs) in plants. Li P; Quan X; Jia G; Xiao J; Cloutier S; You FM BMC Genomics; 2016 Nov; 17(1):852. PubMed ID: 27806688 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]