These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 30691176)

  • 1. A Framework for Rice Heavy Metal Stress Monitoring Based on Phenological Phase Space and Temporal Profile Analysis.
    Zou X; Liu X; Liu M; Liu M; Zhang B
    Int J Environ Res Public Health; 2019 Jan; 16(3):. PubMed ID: 30691176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of Rice Heavy Metal Stress Levels Based on Phenological Characteristics Using Remote Sensing Time-Series Images and Data Mining Algorithms.
    Liu T; Liu X; Liu M; Wu L
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30558149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating Heavy Metal Stress Levels in Rice Based on Remote Sensing Phenology.
    Liu T; Liu X; Liu M; Wu L
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29538350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extraction of Rice Phenological Differences under Heavy Metal Stress Using EVI Time-Series from HJ-1A/B Data.
    Liu S; Liu X; Liu M; Wu L; Ding C; Huang Z
    Sensors (Basel); 2017 May; 17(6):. PubMed ID: 28556819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heavy metal-induced stress in rice crops detected using multi-temporal Sentinel-2 satellite images.
    Liu M; Wang T; Skidmore AK; Liu X
    Sci Total Environ; 2018 Oct; 637-638():18-29. PubMed ID: 29738893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying rice stress on a regional scale from multi-temporal satellite images using a Bayesian method.
    Liu M; Wang T; Skidmore AK; Liu X; Li M
    Environ Pollut; 2019 Apr; 247():488-498. PubMed ID: 30703682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Analysis of GF-1 and HJ-1 Data to Derive the Optimal Scale for Monitoring Heavy Metal Stress in Rice.
    Wang D; Liu X
    Int J Environ Res Public Health; 2018 Mar; 15(3):. PubMed ID: 29509724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal Characteristics of Stress Signals Using GRU Algorithm for Heavy Metal Detection in Rice Based on Sentinel-2 Images.
    Zhang Y; Liu M; Kong L; Peng T; Xie D; Zhang L; Tian L; Zou X
    Int J Environ Res Public Health; 2022 Feb; 19(5):. PubMed ID: 35270260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finding the Key Periods for Assimilating HJ-1A/B CCD Data and the WOFOST Model to Evaluate Heavy Metal Stress in Rice.
    Zhao S; Qian X; Liu X; Xu Z
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29673178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatio-temporal Index Based on Time Series of Leaf Area Index for Identifying Heavy Metal Stress in Rice under Complex Stressors.
    Tang Y; Liu M; Liu X; Wu L; Zhao B; Wu C
    Int J Environ Res Public Health; 2020 Mar; 17(7):. PubMed ID: 32230956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extraction of Rice Heavy Metal Stress Signal Features Based on Long Time Series Leaf Area Index Data Using Ensemble Empirical Mode Decomposition.
    Tian L; Liu X; Zhang B; Liu M; Wu L
    Int J Environ Res Public Health; 2017 Sep; 14(9):. PubMed ID: 28878147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A New Vegetation Index Based on Multitemporal Sentinel-2 Images for Discriminating Heavy Metal Stress Levels in Rice.
    Zhang Z; Liu M; Liu X; Zhou G
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29986421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of rice phenology date using integrated HJ-1 CCD and Landsat-8 OLI vegetation indices time-series images.
    Wang J; Huang JF; Wang XZ; Jin MT; Zhou Z; Guo QY; Zhao ZW; Huang WJ; Zhang Y; Song XD
    J Zhejiang Univ Sci B; 2015 Oct; 16(10):832-44. PubMed ID: 26465131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deriving the Characteristic Scale for Effectively Monitoring Heavy Metal Stress in Rice by Assimilation of GF-1 Data with the WOFOST Model.
    Huang Z; Liu X; Jin M; Ding C; Jiang J; Wu L
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26959033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Health condition assessment for vegetation exposed to heavy metal pollution through airborne hyperspectral data.
    Banerjee BP; Raval S; Zhai H; Cullen PJ
    Environ Monit Assess; 2017 Nov; 189(12):604. PubMed ID: 29101574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The identification of 'hotspots' of heavy metal pollution in soil-rice systems at a regional scale in eastern China.
    Li W; Xu B; Song Q; Liu X; Xu J; Brookes PC
    Sci Total Environ; 2014 Feb; 472():407-20. PubMed ID: 24295757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ten-year regional monitoring of soil-rice grain contamination by heavy metals with implications for target remediation and food safety.
    He M; Shen H; Li Z; Wang L; Wang F; Zhao K; Liu X; Wendroth O; Xu J
    Environ Pollut; 2019 Jan; 244():431-439. PubMed ID: 30359925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Hyperspectral remote sensing in monitoring the vegetation heavy metal pollution].
    Li N; Lü JS; Altemann W
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Sep; 30(9):2508-11. PubMed ID: 21105429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heavy Metal Pollution in a Soil-Rice System in the Yangtze River Region of China.
    Liu Z; Zhang Q; Han T; Ding Y; Sun J; Wang F; Zhu C
    Int J Environ Res Public Health; 2015 Dec; 13(1):ijerph13010063. PubMed ID: 26703698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.