BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 30691179)

  • 1. Validation of Selected Non-Destructive Methods for Determining the Compressive Strength of Masonry Units Made of Autoclaved Aerated Concrete.
    Jasiński R; Drobiec Ł; Mazur W
    Materials (Basel); 2019 Jan; 12(3):. PubMed ID: 30691179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Stress States in Compressed Masonry Walls Using a Non-Destructive Technique (NDT).
    Jasiński R
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32630473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of the AE Effect to Determine the Stresses State in AAC Masonry Walls under Compression.
    Jasiński R; Stebel K; Kielan P
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34206342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical simulation of autoclaved aerated concrete masonry wall subjected to close-in explosion and the structural damage assessment.
    Liu S; Xu X; Zhang Y; Zhou B; Yang K
    Sci Rep; 2024 Feb; 14(1):3928. PubMed ID: 38366082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Studies of the Confined Effect of Shear Masonry Walls Made of Autoclaved Aerated Concrete Masonry Units.
    Jasiński R; Gąsiorowski T
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fundamental Properties and Thermal Transferability of Masonry Built by Autoclaved Aerated Concrete Self-Insulation Blocks.
    Li F; Chen G; Zhang Y; Hao Y; Si Z
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32260236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Pore Structure on Thermal Conductivity and Mechanical Properties of Autoclaved Aerated Concrete.
    Chen G; Li F; Jing P; Geng J; Si Z
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33440871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concrete Compressive Strength by Means of Ultrasonic Pulse Velocity and Moduli of Elasticity.
    Bolborea B; Baera C; Dan S; Gruin A; Burduhos-Nergis DD; Vasile V
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving Non-Destructive Concrete Strength Tests Using Support Vector Machines.
    Shih YF; Wang YR; Lin KL; Chen CW
    Materials (Basel); 2015 Oct; 8(10):7169-7178. PubMed ID: 28793627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating Compressive Strength of Concrete Containing Untreated Coal Waste Aggregates Using Ultrasonic Pulse Velocity.
    Karimaei M; Dabbaghi F; Dehestani M; Rashidi M
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33572511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the Seismic Performance of Autoclaved Aerated Concrete Self-Insulation Block Walls.
    Liu Y; Chen G; Wang Z; Chen Z; Gao Y; Li F
    Materials (Basel); 2020 Jun; 13(13):. PubMed ID: 32630120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-destructive testing techniques for the forensic engineering investigation of reinforced concrete buildings.
    Hobbs B; Tchoketch Kebir M
    Forensic Sci Int; 2007 Apr; 167(2-3):167-72. PubMed ID: 16904854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compressive strength evaluation of structural lightweight concrete by non-destructive ultrasonic pulse velocity method.
    Bogas JA; Gomes MG; Gomes A
    Ultrasonics; 2013 Jul; 53(5):962-72. PubMed ID: 23351273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristic Curve and Its Use in Determining the Compressive Strength of Concrete by the Rebound Hammer Test.
    Kocáb D; Misák P; Cikrle P
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31450816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Early-Age Concrete Compressive Strength with Ultrasonic Sensors.
    Yoon H; Kim YJ; Kim HS; Kang JW; Koh HM
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28783128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks.
    Trtnik G; Kavcic F; Turk G
    Ultrasonics; 2009 Jan; 49(1):53-60. PubMed ID: 18589471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of Mortar Strength in Historical Brick Masonry Using the Penetrometer Test and Double Punch Test.
    Łątka D; Matysek P
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32604915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite Element Study on the Shear Capacity of Traditional Joints between Walls Made of AAC Masonry Units.
    Kozłowski M; Galman I; Jasiński R
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32932936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Destructive and Non-Destructive Evaluation of Fibre-Reinforced Concrete: A Comprehensive Study of Mechanical Properties.
    Najm HM; Nanayakkara O; Sabri MMS
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frost Resistance Number to Assess Freeze and Thaw Resistance of Non-Autoclaved Aerated Concretes Containing Ground Granulated Blast-Furnace Slag and Micro-Silica.
    Sharafutdinov E; Shon CS; Zhang D; Chung CW; Kim J; Bagitova S
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31835717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.