These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30691195)

  • 1. Mechanical Properties of Vacancy Tuned Carbon Honeycomb.
    Xie L; An H; He C; Qin Q; Peng Q
    Nanomaterials (Basel); 2019 Jan; 9(2):. PubMed ID: 30691195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anisotropic and temperature dependent mechanical properties of carbon honeycomb.
    Qin Q; An H; He C; Xie L; Peng Q
    Nanotechnology; 2019 Aug; 30(32):325704. PubMed ID: 30925489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature- and Defect-Induced Uniaxial Tensile Mechanical Behaviors and the Fracture Mechanism of Two-Dimensional Silicon Germanide.
    Islam ASMJ; Akbar MS; Islam MS; Park J
    ACS Omega; 2021 Aug; 6(34):21861-21871. PubMed ID: 34497881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Dynamics Simulation on Mechanical and Piezoelectric Properties of Boron Nitride Honeycomb Structures.
    Xie L; Wang T; He C; Sun Z; Peng Q
    Nanomaterials (Basel); 2019 Jul; 9(7):. PubMed ID: 31330928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Temperature-Sensitive Anisotropic Negative Poisson's Ratio of Carbon Honeycomb.
    Wang W; He C; Xie L; Peng Q
    Nanomaterials (Basel); 2019 Mar; 9(4):. PubMed ID: 30925696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of substitutional and vacancy defects on the electrical and mechanical properties of 2D-hexagonal boron nitride.
    Sagar TC; Chinthapenta V
    J Mol Model; 2020 Jul; 26(8):192. PubMed ID: 32620980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomistic simulation of the mechanical behaviors of the pristine and vacancy-induced Ti
    Hassan MM; Islam J; Sajal WR; Noman MNH; Rahman MA
    Heliyon; 2024 Feb; 10(4):e25913. PubMed ID: 38390165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vacancy-Induced Thermal Transport and Tensile Mechanical Behavior of Monolayer Honeycomb BeO.
    Islam ASMJ; Islam MS; Mim NZ; Akbar MS; Hasan MS; Islam MR; Stampfl C; Park J
    ACS Omega; 2022 Feb; 7(5):4525-4537. PubMed ID: 35155944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic-scale analysis of the physical strength and phonon transport mechanisms of monolayer β-bismuthene.
    Chowdhury EH; Rahman MH; Bose P; Jayan R; Islam MM
    Phys Chem Chem Phys; 2020 Dec; 22(48):28238-28255. PubMed ID: 33295342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of temperature and intrinsic structural defects on mechanical properties and thermal conductivities of InSe monolayers.
    Pham VT; Fang TH
    Sci Rep; 2020 Sep; 10(1):15082. PubMed ID: 32934331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalous strength characteristics of Stone-Thrower-Wales defects in graphene sheets - a molecular dynamics study.
    Juneja A; Rajasekaran G
    Phys Chem Chem Phys; 2018 Jun; 20(22):15203-15215. PubMed ID: 29789830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic vacancies significantly degrade the mechanical properties of phosphorene.
    Sha ZD; Pei QX; Zhang YY; Zhang YW
    Nanotechnology; 2016 Aug; 27(31):315704. PubMed ID: 27345189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Strain Rate, Temperature, Vacancy, and Microcracks on Mechanical Properties of 8-16-4 Graphyne.
    Peng Q; Huang Z; Chen G; Zhang Y; Zhang X; Chen XJ; Hu Z
    Nanomaterials (Basel); 2024 Mar; 14(6):. PubMed ID: 38535704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bottom-up Design of Three-Dimensional Carbon-Honeycomb with Superb Specific Strength and High Thermal Conductivity.
    Pang Z; Gu X; Wei Y; Yang R; Dresselhaus MS
    Nano Lett; 2017 Jan; 17(1):179-185. PubMed ID: 28073254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical properties of highly defective graphene: from brittle rupture to ductile fracture.
    Xu L; Wei N; Zheng Y
    Nanotechnology; 2013 Dec; 24(50):505703. PubMed ID: 24270887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption and Diffusion of Hydrogen in Carbon Honeycomb.
    Qin Q; Sun T; Wang H; Brault P; An H; Xie L; Peng Q
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32085382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic Simulations of Packing Structures, Local Stress and Mechanical Properties for One Silicon Lattice with Single Vacancy on Heating.
    Dai F; Zhao D; Zhang L
    Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34200276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly efficient desalination performance of carbon honeycomb based reverse osmosis membranes unveiled by molecular dynamics simulations.
    Qin Q; Liu X; Wang H; Sun T; Chu F; Xie L; Brault P; Peng Q
    Nanotechnology; 2021 Jun; 32(37):. PubMed ID: 34020428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consideration of critical axial properties of pristine and defected carbon nanotubes under compression.
    Ranjbartoreh AR; Su D; Wang G
    J Nanosci Nanotechnol; 2012 Jun; 12(6):5025-9. PubMed ID: 22905571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical properties of borophene films: a reactive molecular dynamics investigation.
    Le MQ; Mortazavi B; Rabczuk T
    Nanotechnology; 2016 Nov; 27(44):445709. PubMed ID: 27678335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.