These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 30691262)

  • 1. Connect the Thermodynamics of Bulk and Confined Fluids: Confinement-Adsorption Scaling.
    Qiao CZ; Zhao SL; Liu HL; Dong W
    Langmuir; 2019 Mar; 35(10):3840-3847. PubMed ID: 30691262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamics of hydrogen adsorption in slit-like carbon nanopores at 77 K. Classical versus path-integral Monte Carlo simulations.
    Kowalczyk P; Gauden PA; Terzyk AP; Bhatia SK
    Langmuir; 2007 Mar; 23(7):3666-72. PubMed ID: 17323981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption stress changes the elasticity of liquid argon confined in a nanopore.
    Gor GY
    Langmuir; 2014 Nov; 30(45):13564-9. PubMed ID: 25346060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface excess free energy of simple fluids confined in cylindrical pores by isothermal-isobaric Monte Carlo: influence of pore size.
    Puibasset J
    J Chem Phys; 2007 May; 126(18):184701. PubMed ID: 17508818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does confining the hard-sphere fluid between hard walls change its average properties?
    Mittal J; Errington JR; Truskett TM
    J Chem Phys; 2007 Jun; 126(24):244708. PubMed ID: 17614578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gibbs Ensemble Monte Carlo Simulation of Fluids in Confinement: Relation between the Differential and Integral Pressures.
    Erdős M; Galteland O; Bedeaux D; Kjelstrup S; Moultos OA; Vlugt TJH
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32050452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic pressure of simple fluids confined in cylindrical nanopores by isothermal-isobaric Monte Carlo: influence of fluid/substrate interactions.
    Puibasset J
    J Chem Phys; 2007 Aug; 127(7):074702. PubMed ID: 17718622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the grand-canonical partition function using expanded Wang-Landau simulations. II. Adsorption of atomic and molecular fluids in a porous material.
    Desgranges C; Delhommelle J
    J Chem Phys; 2012 May; 136(18):184108. PubMed ID: 22583278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic characterization of fluids confined in heterogeneous pores by monte carlo simulations in the grand canonical and the isobaric-isothermal ensembles.
    Puibasset J
    J Phys Chem B; 2005 Apr; 109(16):8185-94. PubMed ID: 16851957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispersion truncation affects the phase behavior of bulk and confined fluids: Coexistence, adsorption, and criticality.
    Schlaich A; Coasne B
    J Chem Phys; 2019 Apr; 150(15):154104. PubMed ID: 31005104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic properties of confined square-well fluids with multiple associating sites.
    Trejos VM; Quintana-H J
    J Chem Phys; 2018 Feb; 148(7):074703. PubMed ID: 29471659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mean field kinetic theory for a lattice gas model of fluids confined in porous materials.
    Monson PA
    J Chem Phys; 2008 Feb; 128(8):084701. PubMed ID: 18315066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer simulation of the phase diagram for a fluid confined in a fractal and disordered porous material.
    De Grandis V; Gallo P; Rovere M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061505. PubMed ID: 15697372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaled Particle Theory for Multicomponent Hard Sphere Fluids Confined in Random Porous Media.
    Chen W; Zhao SL; Holovko M; Chen XS; Dong W
    J Phys Chem B; 2016 Jun; 120(24):5491-504. PubMed ID: 27294670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Equation of state for confined fluids.
    Bråten V; Zhang DT; Hammer M; Aasen A; Schnell SK; Wilhelmsen Ø
    J Chem Phys; 2022 Jun; 156(24):244504. PubMed ID: 35778084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Many-Body Effects on the Thermodynamics of Fluids, Mixtures, and Nanoconfined Fluids.
    Desgranges C; Delhommelle J
    J Chem Theory Comput; 2015 Nov; 11(11):5401-14. PubMed ID: 26574329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local Grand Canonical Monte Carlo Simulation Method for Confined Fluids.
    Vo P; Lu H; Ma K; Forsman J; Woodward CE
    J Chem Theory Comput; 2019 Dec; 15(12):6944-6957. PubMed ID: 31665596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the Gibbs-Thomson equation for the crystallization of confined fluids.
    Scalfi L; Coasne B; Rotenberg B
    J Chem Phys; 2021 Mar; 154(11):114711. PubMed ID: 33752374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quasicontinuous Cooperative Adsorption Mechanism in Crystalline Nanoporous Materials.
    Mazur B; Formalik F; Roztocki K; Bon V; Kaskel S; Neimark AV; Firlej L; Kuchta B
    J Phys Chem Lett; 2022 Aug; 13(30):6961-6965. PubMed ID: 35877384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of pore geometry on the compressibility of a confined simple fluid.
    Dobrzanski CD; Maximov MA; Gor GY
    J Chem Phys; 2018 Feb; 148(5):054503. PubMed ID: 29421901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.