These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 3069130)
1. Evidence for a singlet intermediate in catalysis by Escherichia coli DNA photolyase and evaluation of substrate binding determinants. Jordan SP; Jorns MS Biochemistry; 1988 Dec; 27(25):8915-23. PubMed ID: 3069130 [TBL] [Abstract][Full Text] [Related]
2. Chromophore function and interaction in Escherichia coli DNA photolyase: reconstitution of the apoenzyme with pterin and/or flavin derivatives. Jorns MS; Wang BY; Jordan SP; Chanderkar LP Biochemistry; 1990 Jan; 29(2):552-61. PubMed ID: 2405908 [TBL] [Abstract][Full Text] [Related]
3. DNA repair catalyzed by Escherichia coli DNA photolyase containing only reduced flavin: elimination of the enzyme's second chromophore by reduction with sodium borohydride. Jorns MS; Wang B; Jordan SP Biochemistry; 1987 Oct; 26(21):6810-6. PubMed ID: 3322390 [TBL] [Abstract][Full Text] [Related]
4. Direct evidence for singlet-singlet energy transfer in Escherichia coli DNA photolyase. Lipman RS; Jorns MS Biochemistry; 1992 Jan; 31(3):786-91. PubMed ID: 1731935 [TBL] [Abstract][Full Text] [Related]
5. Effect of flavin structure and redox state on catalysis by and flavin-pterin energy transfer in Escherichia coli DNA photolyase. Chanderkar LP; Jorns MS Biochemistry; 1991 Jan; 30(3):745-54. PubMed ID: 1988061 [TBL] [Abstract][Full Text] [Related]
6. Action mechanism of Escherichia coli DNA photolyase. II. Role of the chromophores in catalysis. Jorns MS; Baldwin ET; Sancar GB; Sancar A J Biol Chem; 1987 Jan; 262(1):486-91. PubMed ID: 3539940 [TBL] [Abstract][Full Text] [Related]
7. Identification of oligothymidylates as new simple substrates for Escherichia coli DNA photolyase and their use in a rapid spectrophotometric enzyme assay. Jorns MS; Sancar GB; Sancar A Biochemistry; 1985 Apr; 24(8):1856-61. PubMed ID: 3893539 [TBL] [Abstract][Full Text] [Related]
8. Energy transduction during catalysis by Escherichia coli DNA photolyase. Ramsey AJ; Alderfer JL; Jorns MS Biochemistry; 1992 Aug; 31(31):7134-42. PubMed ID: 1643047 [TBL] [Abstract][Full Text] [Related]
9. Absolute action spectrum of E-FADH2 and E-FADH2-MTHF forms of Escherichia coli DNA photolyase. Payne G; Sancar A Biochemistry; 1990 Aug; 29(33):7715-27. PubMed ID: 2271530 [TBL] [Abstract][Full Text] [Related]
10. Reconstitution of Escherichia coli photolyase with flavins and flavin analogues. Payne G; Wills M; Walsh C; Sancar A Biochemistry; 1990 Jun; 29(24):5706-11. PubMed ID: 2200512 [TBL] [Abstract][Full Text] [Related]
11. An unnatural folate stereoisomer is catalytically competent in DNA photolyase. Lipman RS; Jorns MS Biochemistry; 1996 Jun; 35(24):7968-73. PubMed ID: 8672500 [TBL] [Abstract][Full Text] [Related]
12. Determination of rates and yields of interchromophore (folate----flavin) energy transfer and intermolecular (flavin----DNA) electron transfer in Escherichia coli photolyase by time-resolved fluorescence and absorption spectroscopy. Kim ST; Heelis PF; Okamura T; Hirata Y; Mataga N; Sancar A Biochemistry; 1991 Nov; 30(47):11262-70. PubMed ID: 1958664 [TBL] [Abstract][Full Text] [Related]
13. Effect of 5-deazaflavin on energy transduction during catalysis by Escherichia coli DNA photolyase. Ramsey AJ; Jorns MS Biochemistry; 1992 Sep; 31(36):8437-41. PubMed ID: 1390627 [TBL] [Abstract][Full Text] [Related]
14. Affinity probing of flavin binding sites. 2. Identification of a reactive cysteine in the flavin domain of Escherichia coli DNA photolyase. Raibekas AA; Jorns MS Biochemistry; 1994 Oct; 33(42):12656-64. PubMed ID: 7918492 [TBL] [Abstract][Full Text] [Related]
15. Roles of FAD and 8-hydroxy-5-deazaflavin chromophores in photoreactivation by Anacystis nidulans DNA photolyase. Malhotra K; Kim ST; Walsh C; Sancar A J Biol Chem; 1992 Aug; 267(22):15406-11. PubMed ID: 1639785 [TBL] [Abstract][Full Text] [Related]
16. Action mechanism of Escherichia coli DNA photolyase. III. Photolysis of the enzyme-substrate complex and the absolute action spectrum. Sancar GB; Jorns MS; Payne G; Fluke DJ; Rupert CS; Sancar A J Biol Chem; 1987 Jan; 262(1):492-8. PubMed ID: 3539941 [TBL] [Abstract][Full Text] [Related]
17. The active form of Escherichia coli DNA photolyase contains a fully reduced flavin and not a flavin radical, both in vivo and in vitro. Payne G; Heelis PF; Rohrs BR; Sancar A Biochemistry; 1987 Nov; 26(22):7121-7. PubMed ID: 2827744 [TBL] [Abstract][Full Text] [Related]
18. DNA photorepair: chromophore composition and function in two classes of DNA photolyases. Jorns MS Biofactors; 1990 Oct; 2(4):207-11. PubMed ID: 2282137 [TBL] [Abstract][Full Text] [Related]
19. The third chromophore of DNA photolyase: Trp-277 of Escherichia coli DNA photolyase repairs thymine dimers by direct electron transfer. Kim ST; Li YF; Sancar A Proc Natl Acad Sci U S A; 1992 Feb; 89(3):900-4. PubMed ID: 1736305 [TBL] [Abstract][Full Text] [Related]
20. Effect of base, pentose, and phosphodiester backbone structures on binding and repair of pyrimidine dimers by Escherichia coli DNA photolyase. Kim ST; Sancar A Biochemistry; 1991 Sep; 30(35):8623-30. PubMed ID: 1716150 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]