These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
306 related articles for article (PubMed ID: 30691387)
1. MrSVP, a secreted virulence-associated protein, contributes to thermotolerance and virulence of the entomopathogenic fungus Metarhizium robertsii. Xie T; Wang Y; Yu D; Zhang Q; Zhang T; Wang Z; Huang B BMC Microbiol; 2019 Jan; 19(1):25. PubMed ID: 30691387 [TBL] [Abstract][Full Text] [Related]
2. DNM1, a Dynamin-Related Protein That Contributes to Endocytosis and Peroxisome Fission, Is Required for the Vegetative Growth, Sporulation, and Virulence of Metarhizium Xie X; Wang Y; Yu D; Xie R; Liu Z; Huang B Appl Environ Microbiol; 2020 Aug; 86(17):. PubMed ID: 32631867 [TBL] [Abstract][Full Text] [Related]
3. MrArk1, an actin-regulating kinase gene, is required for endocytosis and involved in sustaining conidiation capacity and virulence in Metarhizium robertsii. Wang Z; Jiang Y; Li Y; Feng J; Huang B Appl Microbiol Biotechnol; 2019 Jun; 103(12):4859-4868. PubMed ID: 31025075 [TBL] [Abstract][Full Text] [Related]
4. The role of MrUbp4, a deubiquitinase, in conidial yield, thermotolerance, and virulence in Metarhizium robertsii. Zhang H; Chen H; Zhang J; Wang K; Huang B; Wang Z J Invertebr Pathol; 2024 Jun; 204():108111. PubMed ID: 38631560 [TBL] [Abstract][Full Text] [Related]
5. The Ste12-like transcription factor MaSte12 is involved in pathogenicity by regulating the appressorium formation in the entomopathogenic fungus, Metarhizium acridum. Wei Q; Du Y; Jin K; Xia Y Appl Microbiol Biotechnol; 2017 Dec; 101(23-24):8571-8584. PubMed ID: 29079863 [TBL] [Abstract][Full Text] [Related]
6. The polyubiquitin gene Wang Z; Zhu H; Cheng Y; Jiang Y; Li Y; Huang B Genes (Basel); 2019 May; 10(6):. PubMed ID: 31146457 [TBL] [Abstract][Full Text] [Related]
7. Hypothetical protein MAA_07646 is required for stress resistance and pathogenicity in Metarhizium robertsii. Chen M; Yu Y; Tong Y; Wu H; Qu J; Yang Y; Huang B World J Microbiol Biotechnol; 2024 Mar; 40(5):141. PubMed ID: 38519797 [TBL] [Abstract][Full Text] [Related]
8. Isolation, morphological characterization, and screening virulence of Geremew D; Shiberu T; Leta A F1000Res; 2023; 12():827. PubMed ID: 38434644 [TBL] [Abstract][Full Text] [Related]
9. MaMk1, a FUS3/KSS1-type mitogen-activated protein kinase gene, is required for appressorium formation, and insect cuticle penetration of the entomopathogenic fungus Metarhizium acridum. Jin K; Han L; Xia Y J Invertebr Pathol; 2014 Jan; 115():68-75. PubMed ID: 24184951 [TBL] [Abstract][Full Text] [Related]
10. MaPacC, a pH-responsive transcription factor, negatively regulates thermotolerance and contributes to conidiation and virulence in Metarhizium acridum. Zhang M; Wei Q; Xia Y; Jin K Curr Genet; 2020 Apr; 66(2):397-408. PubMed ID: 31471639 [TBL] [Abstract][Full Text] [Related]
11. MaPmt1, a protein O-mannosyltransferase, contributes to virulence through governing the appressorium turgor pressure in Metarhizium acridum. Wen Z; Tian H; Xia Y; Jin K Fungal Genet Biol; 2020 Dec; 145():103480. PubMed ID: 33130254 [TBL] [Abstract][Full Text] [Related]
12. DNA methyltransferases contribute to the fungal development, stress tolerance and virulence of the entomopathogenic fungus Metarhizium robertsii. Wang Y; Wang T; Qiao L; Zhu J; Fan J; Zhang T; Wang ZX; Li W; Chen A; Huang B Appl Microbiol Biotechnol; 2017 May; 101(10):4215-4226. PubMed ID: 28238081 [TBL] [Abstract][Full Text] [Related]
13. Linkage of autophagy to fungal development, lipid storage and virulence in Metarhizium robertsii. Duan Z; Chen Y; Huang W; Shang Y; Chen P; Wang C Autophagy; 2013 Apr; 9(4):538-49. PubMed ID: 23380892 [TBL] [Abstract][Full Text] [Related]
14. Involvement of MaSom1, a downstream transcriptional factor of cAMP/PKA pathway, in conidial yield, stress tolerances, and virulence in Metarhizium acridum. Du Y; Jin K; Xia Y Appl Microbiol Biotechnol; 2018 Jul; 102(13):5611-5623. PubMed ID: 29713793 [TBL] [Abstract][Full Text] [Related]
15. The homeobox transcription factor MrHOX7 contributes to stress tolerance and virulence in the entomopathogenic fungus Metarhizium robertsii. Yang N; Wu H; Tong Y; Liu Z; Li X; Huang B J Invertebr Pathol; 2024 Mar; 203():108071. PubMed ID: 38286328 [TBL] [Abstract][Full Text] [Related]
16. Genetically altering the expression of neutral trehalase gene affects conidiospore thermotolerance of the entomopathogenic fungus Metarhizium acridum. Leng Y; Peng G; Cao Y; Xia Y BMC Microbiol; 2011 Feb; 11():32. PubMed ID: 21310069 [TBL] [Abstract][Full Text] [Related]
17. The tetraspanin gene MaPls1 contributes to virulence by affecting germination, appressorial function and enzymes for cuticle degradation in the entomopathogenic fungus, Metarhizium acridum. Luo S; He M; Cao Y; Xia Y Environ Microbiol; 2013 Nov; 15(11):2966-79. PubMed ID: 23809263 [TBL] [Abstract][Full Text] [Related]
18. MrSkn7 controls sporulation, cell wall integrity, autolysis, and virulence in Metarhizium robertsii. Shang Y; Chen P; Chen Y; Lu Y; Wang C Eukaryot Cell; 2015 Apr; 14(4):396-405. PubMed ID: 25710964 [TBL] [Abstract][Full Text] [Related]
19. The G-protein coupled receptor GPRK contributes to fungal development and full virulence in Metarhizium robertsii. Yu D; Xie R; Wang Y; Xie T; Xu L; Huang B J Invertebr Pathol; 2021 Jul; 183():107627. PubMed ID: 34081962 [TBL] [Abstract][Full Text] [Related]
20. DNA methyltransferase implicated in the recovery of conidiation, through successive plant passages, in phenotypically degenerated Metarhizium. Hu S; Bidochka MJ Appl Microbiol Biotechnol; 2020 Jun; 104(12):5371-5383. PubMed ID: 32318770 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]