These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 30691482)
41. Mechanical Design and Kinematic Modeling of a Cable-Driven Arm Exoskeleton Incorporating Inaccurate Human Limb Anthropomorphic Parameters. Chen W; Li Z; Cui X; Zhang J; Bai S Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31618848 [TBL] [Abstract][Full Text] [Related]
42. A robotic object hitting task to quantify sensorimotor impairments in participants with stroke. Tyryshkin K; Coderre AM; Glasgow JI; Herter TM; Bagg SD; Dukelow SP; Scott SH J Neuroeng Rehabil; 2014 Apr; 11():47. PubMed ID: 24693877 [TBL] [Abstract][Full Text] [Related]
43. Quantification of task-dependent cortical activation evoked by robotic continuous wrist joint manipulation in chronic hemiparetic stroke. Vlaar MP; Solis-Escalante T; Dewald JPA; van Wegen EEH; Schouten AC; Kwakkel G; van der Helm FCT; J Neuroeng Rehabil; 2017 Apr; 14(1):30. PubMed ID: 28412953 [TBL] [Abstract][Full Text] [Related]
44. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients. Daly JJ; Ruff RL ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618 [TBL] [Abstract][Full Text] [Related]
45. Validating the measurement of upper limb sensorimotor behavior utilizing a tablet in neurologically intact controls and individuals with chronic stroke. Austin DS; Dixon MJ; Tulimieri DT; Cashaback JGA; Semrau JA J Neuroeng Rehabil; 2023 Sep; 20(1):114. PubMed ID: 37658432 [TBL] [Abstract][Full Text] [Related]
46. Reliability, validity and discriminant ability of the instrumental indices provided by a novel planar robotic device for upper limb rehabilitation. Germanotta M; Cruciani A; Pecchioli C; Loreti S; Spedicato A; Meotti M; Mosca R; Speranza G; Cecchi F; Giannarelli G; Padua L; Aprile I J Neuroeng Rehabil; 2018 May; 15(1):39. PubMed ID: 29769127 [TBL] [Abstract][Full Text] [Related]
47. Comparison of two techniques of robot-aided upper limb exercise training after stroke. Stein J; Krebs HI; Frontera WR; Fasoli SE; Hughes R; Hogan N Am J Phys Med Rehabil; 2004 Sep; 83(9):720-8. PubMed ID: 15314537 [TBL] [Abstract][Full Text] [Related]
48. Tongue-controlled robotic rehabilitation: A feasibility study in people with stroke. Ostadabbas S; Housley SN; Sebkhi N; Richards K; Wu D; Zhang Z; Rodriguez MG; Warthen L; Yarbrough C; Belagaje S; Butler AJ; Ghovanloo M J Rehabil Res Dev; 2016; 53(6):989-1006. PubMed ID: 28475207 [TBL] [Abstract][Full Text] [Related]
49. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. Bortole M; Venkatakrishnan A; Zhu F; Moreno JC; Francisco GE; Pons JL; Contreras-Vidal JL J Neuroeng Rehabil; 2015 Jun; 12():54. PubMed ID: 26076696 [TBL] [Abstract][Full Text] [Related]
50. Performance-based robotic assistance during rhythmic arm exercises. Leconte P; Ronsse R J Neuroeng Rehabil; 2016 Sep; 13(1):82. PubMed ID: 27623806 [TBL] [Abstract][Full Text] [Related]
51. Effects of robot-aided bilateral force-induced isokinetic arm training combined with conventional rehabilitation on arm motor function in patients with chronic stroke. Chang JJ; Tung WL; Wu WL; Huang MH; Su FC Arch Phys Med Rehabil; 2007 Oct; 88(10):1332-8. PubMed ID: 17908578 [TBL] [Abstract][Full Text] [Related]
53. Robot-based hand motor therapy after stroke. Takahashi CD; Der-Yeghiaian L; Le V; Motiwala RR; Cramer SC Brain; 2008 Feb; 131(Pt 2):425-37. PubMed ID: 18156154 [TBL] [Abstract][Full Text] [Related]
54. Evaluation of upper limb sense of position in healthy individuals and patients after stroke. Cusmano I; Sterpi I; Mazzone A; Ramat S; Delconte C; Pisano F; Colombo R J Healthc Eng; 2014; 5(2):145-62. PubMed ID: 24918181 [TBL] [Abstract][Full Text] [Related]
55. Chronic stroke survivors show task-dependent modulation of motor variability during bimanual coordination. Ranganathan R; Gebara R; Andary M; Sylvain J J Neurophysiol; 2019 Mar; 121(3):756-763. PubMed ID: 30601671 [TBL] [Abstract][Full Text] [Related]
56. Design and kinematic analysis of a novel upper limb exoskeleton for rehabilitation of stroke patients. Zeiaee A; Soltani-Zarrin R; Langari R; Tafreshi R IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():759-764. PubMed ID: 28813911 [TBL] [Abstract][Full Text] [Related]
57. Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial. Klamroth-Marganska V; Blanco J; Campen K; Curt A; Dietz V; Ettlin T; Felder M; Fellinghauer B; Guidali M; Kollmar A; Luft A; Nef T; Schuster-Amft C; Stahel W; Riener R Lancet Neurol; 2014 Feb; 13(2):159-66. PubMed ID: 24382580 [TBL] [Abstract][Full Text] [Related]
58. Comparison of exercise training effect with different robotic devices for upper limb rehabilitation: a retrospective study. Colombo R; Pisano F; Delconte C; Mazzone A; Grioni G; Castagna M; Bazzini G; Imarisio C; Maggioni G; Pistarini C Eur J Phys Rehabil Med; 2017 Apr; 53(2):240-248. PubMed ID: 27676203 [TBL] [Abstract][Full Text] [Related]
59. Robotic assessment of rapid motor decision making in children with perinatal stroke. Hawe RL; Kuczynski AM; Kirton A; Dukelow SP J Neuroeng Rehabil; 2020 Jul; 17(1):94. PubMed ID: 32664980 [TBL] [Abstract][Full Text] [Related]
60. Kinematic measures for upper limb motor assessment during robot-mediated training in patients with severe sub-acute stroke. Duret C; Courtial O; Grosmaire AG Restor Neurol Neurosci; 2016; 34(2):237-45. PubMed ID: 26890098 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]