These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 30691493)

  • 1. Evaluation of biomechanical gait parameters of patients with Cerebral Palsy at three different levels of gait assistance using the CPWalker.
    Aycardi LF; Cifuentes CA; Múnera M; Bayón C; Ramírez O; Lerma S; Frizera A; Rocon E
    J Neuroeng Rehabil; 2019 Jan; 16(1):15. PubMed ID: 30691493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Locomotor training through a novel robotic platform for gait rehabilitation in pediatric population: short report.
    Bayón C; Lerma S; Ramírez O; Serrano JI; Del Castillo MD; Raya R; Belda-Lois JM; Martínez I; Rocon E
    J Neuroeng Rehabil; 2016 Nov; 13(1):98. PubMed ID: 27842562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward a hybrid exoskeleton for crouch gait in children with cerebral palsy: neuromuscular electrical stimulation for improved knee extension.
    Shideler BL; Bulea TC; Chen J; Stanley CJ; Gravunder AJ; Damiano DL
    J Neuroeng Rehabil; 2020 Sep; 17(1):121. PubMed ID: 32883297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gait improvements by assisting hip movements with the robot in children with cerebral palsy: a pilot randomized controlled trial.
    Kawasaki S; Ohata K; Yoshida T; Yokoyama A; Yamada S
    J Neuroeng Rehabil; 2020 Jul; 17(1):87. PubMed ID: 32620131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatio-temporal gait analysis in children with cerebral palsy using, foot-worn inertial sensors.
    Brégou Bourgeois A; Mariani B; Aminian K; Zambelli PY; Newman CJ
    Gait Posture; 2014; 39(1):436-42. PubMed ID: 24044970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effectiveness of robotic assistance for gait training in children with cerebral palsy. a systematic review].
    Colomera JA; Nahuelhual P
    Rehabilitacion (Madr); 2020; 54(2):107-115. PubMed ID: 32370825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A robot-based gait training therapy for pediatric population with cerebral palsy: goal setting, proposal and preliminary clinical implementation.
    Bayón C; Martín-Lorenzo T; Moral-Saiz B; Ramírez Ó; Pérez-Somarriba Á; Lerma-Lara S; Martínez I; Rocon E
    J Neuroeng Rehabil; 2018 Jul; 15(1):69. PubMed ID: 30053857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Robotic Exoskeleton for Treatment of Crouch Gait in Children With Cerebral Palsy: Design and Initial Application.
    Lerner ZF; Damiano DL; Park HS; Gravunder AJ; Bulea TC
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):650-659. PubMed ID: 27479974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different horse's paces during hippotherapy on spatio-temporal parameters of gait in children with bilateral spastic cerebral palsy: A feasibility study.
    Antunes FN; Pinho ASD; Kleiner AFR; Salazar AP; Eltz GD; de Oliveira Junior AA; Cechetti F; Galli M; Pagnussat AS
    Res Dev Disabil; 2016 Dec; 59():65-72. PubMed ID: 27518920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: A systematic review.
    Hunt M; Everaert L; Brown M; Muraru L; Hatzidimitriadou E; Desloovere K
    Gait Posture; 2022 Oct; 98():343-354. PubMed ID: 36306544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of motor performance in children with cerebral palsy treated with exoskeleton robotic training: A retrospective explorative analysis.
    Digiacomo F; Tamburin S; Tebaldi S; Pezzani M; Tagliafierro M; Casale R; Bartolo M
    Restor Neurol Neurosci; 2019; 37(3):239-244. PubMed ID: 31177250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Safety and immediate effects of Hybrid Assistive Limb in children with cerebral palsy: A pilot study.
    Nakagawa S; Mutsuzaki H; Mataki Y; Endo Y; Matsuda M; Yoshikawa K; Kamada H; Iwasaki N; Yamazaki M
    Brain Dev; 2020 Feb; 42(2):140-147. PubMed ID: 31704189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between assistive torque and knee biomechanics during exoskeleton walking in individuals with crouch gait.
    Lerner ZF; Damiano DL; Bulea TC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():491-497. PubMed ID: 28813868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Benefits of robotics in gait rehabilitation in cerebral palsy: A systematic review].
    Lobato Garcia L; González González Y; Da Cuña Carrera I; Alonso Calvete A
    Rehabilitacion (Madr); 2020; 54(2):128-136. PubMed ID: 32370827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of robotic-assisted gait rehabilitation on dynamic equilibrium control in the gait of children with cerebral palsy.
    Wallard L; Dietrich G; Kerlirzin Y; Bredin J
    Gait Posture; 2018 Feb; 60():55-60. PubMed ID: 29156378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effects of rhythmic auditory stimulation and neurodevelopmental treatment/Bobath on gait patterns in adults with cerebral palsy: a randomized controlled trial.
    Kim SJ; Kwak EE; Park ES; Cho SR
    Clin Rehabil; 2012 Oct; 26(10):904-14. PubMed ID: 22308559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A robotic exoskeleton to treat crouch gait from cerebral palsy: Initial kinematic and neuromuscular evaluation.
    Lerner ZF; Damiano DL; Bulea TC
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2214-2217. PubMed ID: 28324959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repeatability of EMG activity during exoskeleton assisted walking in children with cerebral palsy: implications for real time adaptable control.
    Bulea TC; Lerner ZF; Damiano DL
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2801-2804. PubMed ID: 30440983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of functional power training on gait kinematics in children with cerebral palsy.
    Oudenhoven LM; van Vulpen LF; Dallmeijer AJ; de Groot S; Buizer AI; van der Krogt MM
    Gait Posture; 2019 Sep; 73():168-172. PubMed ID: 31344605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive ankle exoskeleton gait training demonstrates acute neuromuscular and spatiotemporal benefits for individuals with cerebral palsy: A pilot study.
    Fang Y; Orekhov G; Lerner ZF
    Gait Posture; 2022 Jun; 95():256-263. PubMed ID: 33248858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.