These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
495 related articles for article (PubMed ID: 30691531)
1. Rational construction of genome-reduced and high-efficient industrial Streptomyces chassis based on multiple comparative genomic approaches. Bu QT; Yu P; Wang J; Li ZY; Chen XA; Mao XM; Li YQ Microb Cell Fact; 2019 Jan; 18(1):16. PubMed ID: 30691531 [TBL] [Abstract][Full Text] [Related]
2. Identification of a secondary metabolism-responsive promoter by proteomics for over-production of natamycin in Streptomyces. Wang K; Chen XA; Li YQ; Mao XM Arch Microbiol; 2019 Dec; 201(10):1459-1464. PubMed ID: 31363787 [TBL] [Abstract][Full Text] [Related]
3. Generation of the natamycin analogs by gene engineering of natamycin biosynthetic genes in Streptomyces chattanoogensis L10. Liu SP; Yuan PH; Wang YY; Liu XF; Zhou ZX; Bu QT; Yu P; Jiang H; Li YQ Microbiol Res; 2015 Apr; 173():25-33. PubMed ID: 25801968 [TBL] [Abstract][Full Text] [Related]
4. Synthetic Biology Tools for Novel Secondary Metabolite Discovery in Lee N; Hwang S; Lee Y; Cho S; Palsson B; Cho BK J Microbiol Biotechnol; 2019 May; 29(5):667-686. PubMed ID: 31091862 [No Abstract] [Full Text] [Related]
5. Sigma factor WhiGch positively regulates natamycin production in Streptomyces chattanoogensis L10. Liu SP; Yu P; Yuan PH; Zhou ZX; Bu QT; Mao XM; Li YQ Appl Microbiol Biotechnol; 2015 Mar; 99(6):2715-26. PubMed ID: 25724582 [TBL] [Abstract][Full Text] [Related]
6. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Komatsu M; Uchiyama T; Omura S; Cane DE; Ikeda H Proc Natl Acad Sci U S A; 2010 Feb; 107(6):2646-51. PubMed ID: 20133795 [TBL] [Abstract][Full Text] [Related]
7. Comparative Genomic and Regulatory Analyses of Natamycin Production of Streptomyces lydicus A02. Wu H; Liu W; Shi L; Si K; Liu T; Dong D; Zhang T; Zhao J; Liu D; Tian Z; Yue Y; Zhang H; Xuelian B; Liang Y Sci Rep; 2017 Aug; 7(1):9114. PubMed ID: 28831190 [TBL] [Abstract][Full Text] [Related]
8. Comprehensive dissection of dispensable genomic regions in Streptomyces based on comparative analysis approach. Bu QT; Li YP; Xie H; Wang J; Li ZY; Chen XA; Mao XM; Li YQ Microb Cell Fact; 2020 May; 19(1):99. PubMed ID: 32375781 [TBL] [Abstract][Full Text] [Related]
9. Generation of a cluster-free Streptomyces albus chassis strains for improved heterologous expression of secondary metabolite clusters. Myronovskyi M; Rosenkränzer B; Nadmid S; Pujic P; Normand P; Luzhetskyy A Metab Eng; 2018 Sep; 49():316-324. PubMed ID: 30196100 [TBL] [Abstract][Full Text] [Related]
10. Lee SQE; Ma GL; Candra H; Khandelwal S; Pang LM; Low ZJ; Cheang QW; Liang ZX ACS Synth Biol; 2024 Apr; 13(4):1259-1272. PubMed ID: 38513222 [TBL] [Abstract][Full Text] [Related]
11. Developing genome-reduced Pseudomonas chlororaphis strains for the production of secondary metabolites. Shen X; Wang Z; Huang X; Hu H; Wang W; Zhang X BMC Genomics; 2017 Sep; 18(1):715. PubMed ID: 28893188 [TBL] [Abstract][Full Text] [Related]
12. [Progress in developing and applying Streptomyces chassis - A review]. Xiao L; Deng Z; Liu T Wei Sheng Wu Xue Bao; 2016 Mar; 56(3):441-53. PubMed ID: 27382787 [TBL] [Abstract][Full Text] [Related]
13. Engineering of Streptomyces lividans for heterologous expression of secondary metabolite gene clusters. Ahmed Y; Rebets Y; Estévez MR; Zapp J; Myronovskyi M; Luzhetskyy A Microb Cell Fact; 2020 Jan; 19(1):5. PubMed ID: 31918711 [TBL] [Abstract][Full Text] [Related]
14. Enhanced heterologous protein productivity by genome reduction in Lactococcus lactis NZ9000. Zhu D; Fu Y; Liu F; Xu H; Saris PE; Qiao M Microb Cell Fact; 2017 Jan; 16(1):1. PubMed ID: 28049473 [TBL] [Abstract][Full Text] [Related]
15. An Efficient Markerless Deletion System Suitable for the Industrial Strains of Dong J; Wei J; Li H; Zhao S; Guan W J Microbiol Biotechnol; 2021 Dec; 31(12):1722-1731. PubMed ID: 34489377 [TBL] [Abstract][Full Text] [Related]
16. The pleitropic regulator AdpAch is required for natamycin biosynthesis and morphological differentiation in Streptomyces chattanoogensis. Du YL; Li SZ; Zhou Z; Chen SF; Fan WM; Li YQ Microbiology (Reading); 2011 May; 157(Pt 5):1300-1311. PubMed ID: 21330439 [TBL] [Abstract][Full Text] [Related]
17. Genome mining of the Streptomyces avermitilis genome and development of genome-minimized hosts for heterologous expression of biosynthetic gene clusters. Ikeda H; Kazuo SY; Omura S J Ind Microbiol Biotechnol; 2014 Feb; 41(2):233-50. PubMed ID: 23990133 [TBL] [Abstract][Full Text] [Related]
18. Rational construction of genome-reduced Burkholderiales chassis facilitates efficient heterologous production of natural products from proteobacteria. Liu J; Zhou H; Yang Z; Wang X; Chen H; Zhong L; Zheng W; Niu W; Wang S; Ren X; Zhong G; Wang Y; Ding X; Müller R; Zhang Y; Bian X Nat Commun; 2021 Jul; 12(1):4347. PubMed ID: 34301933 [TBL] [Abstract][Full Text] [Related]
19. Identification of a novel Streptomyces chattanoogensis L10 and enhancing its natamycin production by overexpressing positive regulator ScnRII. Du YL; Chen SF; Cheng LY; Shen XL; Tian Y; Li YQ J Microbiol; 2009 Aug; 47(4):506-13. PubMed ID: 19763427 [TBL] [Abstract][Full Text] [Related]
20. Deciphering the streamlined genome of Streptomyces xiamenensis 318 as the producer of the anti-fibrotic drug candidate xiamenmycin. Xu MJ; Wang JH; Bu XL; Yu HL; Li P; Ou HY; He Y; Xu FD; Hu XY; Zhu XM; Ao P; Xu J Sci Rep; 2016 Jan; 6():18977. PubMed ID: 26744183 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]