BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

488 related articles for article (PubMed ID: 30691531)

  • 1. Rational construction of genome-reduced and high-efficient industrial Streptomyces chassis based on multiple comparative genomic approaches.
    Bu QT; Yu P; Wang J; Li ZY; Chen XA; Mao XM; Li YQ
    Microb Cell Fact; 2019 Jan; 18(1):16. PubMed ID: 30691531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a secondary metabolism-responsive promoter by proteomics for over-production of natamycin in Streptomyces.
    Wang K; Chen XA; Li YQ; Mao XM
    Arch Microbiol; 2019 Dec; 201(10):1459-1464. PubMed ID: 31363787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of the natamycin analogs by gene engineering of natamycin biosynthetic genes in Streptomyces chattanoogensis L10.
    Liu SP; Yuan PH; Wang YY; Liu XF; Zhou ZX; Bu QT; Yu P; Jiang H; Li YQ
    Microbiol Res; 2015 Apr; 173():25-33. PubMed ID: 25801968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic Biology Tools for Novel Secondary Metabolite Discovery in
    Lee N; Hwang S; Lee Y; Cho S; Palsson B; Cho BK
    J Microbiol Biotechnol; 2019 May; 29(5):667-686. PubMed ID: 31091862
    [No Abstract]   [Full Text] [Related]  

  • 5. Sigma factor WhiGch positively regulates natamycin production in Streptomyces chattanoogensis L10.
    Liu SP; Yu P; Yuan PH; Zhou ZX; Bu QT; Mao XM; Li YQ
    Appl Microbiol Biotechnol; 2015 Mar; 99(6):2715-26. PubMed ID: 25724582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism.
    Komatsu M; Uchiyama T; Omura S; Cane DE; Ikeda H
    Proc Natl Acad Sci U S A; 2010 Feb; 107(6):2646-51. PubMed ID: 20133795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Genomic and Regulatory Analyses of Natamycin Production of Streptomyces lydicus A02.
    Wu H; Liu W; Shi L; Si K; Liu T; Dong D; Zhang T; Zhao J; Liu D; Tian Z; Yue Y; Zhang H; Xuelian B; Liang Y
    Sci Rep; 2017 Aug; 7(1):9114. PubMed ID: 28831190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive dissection of dispensable genomic regions in Streptomyces based on comparative analysis approach.
    Bu QT; Li YP; Xie H; Wang J; Li ZY; Chen XA; Mao XM; Li YQ
    Microb Cell Fact; 2020 May; 19(1):99. PubMed ID: 32375781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of a cluster-free Streptomyces albus chassis strains for improved heterologous expression of secondary metabolite clusters.
    Myronovskyi M; Rosenkränzer B; Nadmid S; Pujic P; Normand P; Luzhetskyy A
    Metab Eng; 2018 Sep; 49():316-324. PubMed ID: 30196100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developing genome-reduced Pseudomonas chlororaphis strains for the production of secondary metabolites.
    Shen X; Wang Z; Huang X; Hu H; Wang W; Zhang X
    BMC Genomics; 2017 Sep; 18(1):715. PubMed ID: 28893188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Progress in developing and applying Streptomyces chassis - A review].
    Xiao L; Deng Z; Liu T
    Wei Sheng Wu Xue Bao; 2016 Mar; 56(3):441-53. PubMed ID: 27382787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering of Streptomyces lividans for heterologous expression of secondary metabolite gene clusters.
    Ahmed Y; Rebets Y; Estévez MR; Zapp J; Myronovskyi M; Luzhetskyy A
    Microb Cell Fact; 2020 Jan; 19(1):5. PubMed ID: 31918711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced heterologous protein productivity by genome reduction in Lactococcus lactis NZ9000.
    Zhu D; Fu Y; Liu F; Xu H; Saris PE; Qiao M
    Microb Cell Fact; 2017 Jan; 16(1):1. PubMed ID: 28049473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Efficient Markerless Deletion System Suitable for the Industrial Strains of
    Dong J; Wei J; Li H; Zhao S; Guan W
    J Microbiol Biotechnol; 2021 Dec; 31(12):1722-1731. PubMed ID: 34489377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The pleitropic regulator AdpAch is required for natamycin biosynthesis and morphological differentiation in Streptomyces chattanoogensis.
    Du YL; Li SZ; Zhou Z; Chen SF; Fan WM; Li YQ
    Microbiology (Reading); 2011 May; 157(Pt 5):1300-1311. PubMed ID: 21330439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome mining of the Streptomyces avermitilis genome and development of genome-minimized hosts for heterologous expression of biosynthetic gene clusters.
    Ikeda H; Kazuo SY; Omura S
    J Ind Microbiol Biotechnol; 2014 Feb; 41(2):233-50. PubMed ID: 23990133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational construction of genome-reduced Burkholderiales chassis facilitates efficient heterologous production of natural products from proteobacteria.
    Liu J; Zhou H; Yang Z; Wang X; Chen H; Zhong L; Zheng W; Niu W; Wang S; Ren X; Zhong G; Wang Y; Ding X; Müller R; Zhang Y; Bian X
    Nat Commun; 2021 Jul; 12(1):4347. PubMed ID: 34301933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a novel Streptomyces chattanoogensis L10 and enhancing its natamycin production by overexpressing positive regulator ScnRII.
    Du YL; Chen SF; Cheng LY; Shen XL; Tian Y; Li YQ
    J Microbiol; 2009 Aug; 47(4):506-13. PubMed ID: 19763427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deciphering the streamlined genome of Streptomyces xiamenensis 318 as the producer of the anti-fibrotic drug candidate xiamenmycin.
    Xu MJ; Wang JH; Bu XL; Yu HL; Li P; Ou HY; He Y; Xu FD; Hu XY; Zhu XM; Ao P; Xu J
    Sci Rep; 2016 Jan; 6():18977. PubMed ID: 26744183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gamma-butyrolactone regulatory system of Streptomyces chattanoogensis links nutrient utilization, metabolism, and development.
    Du YL; Shen XL; Yu P; Bai LQ; Li YQ
    Appl Environ Microbiol; 2011 Dec; 77(23):8415-26. PubMed ID: 21948843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.