These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 30691884)

  • 21. An Ensemble Learning Based Classification Approach for the Prediction of Household Solid Waste Generation.
    Namoun A; Hussein BR; Tufail A; Alrehaili A; Syed TA; BenRhouma O
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591195
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Forecasting municipal solid waste generation using prognostic tools and regression analysis.
    Ghinea C; Drăgoi EN; Comăniţă ED; Gavrilescu M; Câmpean T; Curteanu S; Gavrilescu M
    J Environ Manage; 2016 Nov; 182():80-93. PubMed ID: 27454099
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of influencing municipal characteristics regarding household waste generation and their forecasting ability in Biscay.
    Oribe-Garcia I; Kamara-Esteban O; Martin C; Macarulla-Arenaza AM; Alonso-Vicario A
    Waste Manag; 2015 May; 39():26-34. PubMed ID: 25769537
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Waste-to-energy as a tool of circular economy: Prediction of higher heating value of biomass by artificial neural network (ANN) and multivariate linear regression (MLR).
    Ezzahra Yatim F; Boumanchar I; Srhir B; Chhiti Y; Jama C; Ezzahrae M'hamdi Alaoui F
    Waste Manag; 2022 Nov; 153():293-303. PubMed ID: 36174430
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessment of waste characteristics and their impact on GIS vehicle collection route optimization using ANN waste forecasts.
    Vu HL; Bolingbroke D; Ng KTW; Fallah B
    Waste Manag; 2019 Apr; 88():118-130. PubMed ID: 31079624
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimating methane emissions from landfills based on rainfall, ambient temperature, and waste composition: The CLEEN model.
    Karanjekar RV; Bhatt A; Altouqui S; Jangikhatoonabad N; Durai V; Sattler ML; Hossain MD; Chen V
    Waste Manag; 2015 Dec; 46():389-98. PubMed ID: 26346020
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling the dioxin emission of a municipal solid waste incinerator using neural networks.
    Bunsan S; Chen WY; Chen HW; Chuang YH; Grisdanurak N
    Chemosphere; 2013 Jul; 92(3):258-64. PubMed ID: 23562548
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The use of artificial neural networks and multiple linear regression to predict rate of medical waste generation.
    Jahandideh S; Jahandideh S; Asadabadi EB; Askarian M; Movahedi MM; Hosseini S; Jahandideh M
    Waste Manag; 2009 Nov; 29(11):2874-9. PubMed ID: 19643591
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An empirical model for prediction of household solid waste generation rate - A case study of Dhanbad, India.
    Kumar A; Samadder SR
    Waste Manag; 2017 Oct; 68():3-15. PubMed ID: 28757221
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessing the variables affecting on the rate of solid waste generation and recycling: An empirical analysis in Prespa Park.
    Grazhdani D
    Waste Manag; 2016 Feb; 48():3-13. PubMed ID: 26482808
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The use of a recurrent neural network model with separated time-series and lagged daily inputs for waste disposal rates modeling during COVID-19.
    Vu HL; Ng KTW; Richter A; Kabir G
    Sustain Cities Soc; 2021 Dec; 75():103339. PubMed ID: 34513573
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Artificial intelligence applications in solid waste management: A systematic research review.
    Abdallah M; Abu Talib M; Feroz S; Nasir Q; Abdalla H; Mahfood B
    Waste Manag; 2020 May; 109():231-246. PubMed ID: 32428727
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of artificial neural network and multiple linear regression in modeling nutrient recovery in vermicompost under different conditions.
    Hosseinzadeh A; Baziar M; Alidadi H; Zhou JL; Altaee A; Najafpoor AA; Jafarpour S
    Bioresour Technol; 2020 May; 303():122926. PubMed ID: 32035386
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting the performance of multi-media filters using artificial neural networks.
    Hawari AH; Alnahhal W
    Water Sci Technol; 2016 Nov; 74(9):2225-2233. PubMed ID: 27842042
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Multistep Chaotic Model for Municipal Solid Waste Generation Prediction.
    Song J; He J
    Environ Eng Sci; 2014 Aug; 31(8):461-468. PubMed ID: 25125942
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of municipal solid waste management scenarios in Irkutsk (Russia) using a life cycle assessment-integrated waste management model.
    Tulokhonova A; Ulanova O
    Waste Manag Res; 2013 May; 31(5):475-84. PubMed ID: 23444153
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A review on current status of municipal solid waste management in India.
    Gupta N; Yadav KK; Kumar V
    J Environ Sci (China); 2015 Nov; 37():206-17. PubMed ID: 26574106
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Performance assessment of artificial neural networks and support vector regression models for stream flow predictions.
    Ateeq-Ur-Rauf ; Ghumman AR; Ahmad S; Hashmi HN
    Environ Monit Assess; 2018 Nov; 190(12):704. PubMed ID: 30406854
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbon dioxide and ammonia emissions during composting of mixed paper, yard waste and food waste.
    Komilis DP; Ham RK
    Waste Manag; 2006; 26(1):62-70. PubMed ID: 16287599
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimal planning for the sustainable utilization of municipal solid waste.
    Santibañez-Aguilar JE; Ponce-Ortega JM; Betzabe González-Campos J; Serna-González M; El-Halwagi MM
    Waste Manag; 2013 Dec; 33(12):2607-22. PubMed ID: 24035245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.