BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 30692530)

  • 1. Hierarchical composition of reliable recombinase logic devices.
    Guiziou S; Mayonove P; Bonnet J
    Nat Commun; 2019 Jan; 10(1):456. PubMed ID: 30692530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Automated Design Framework for Multicellular Recombinase Logic.
    Guiziou S; Ulliana F; Moreau V; Leclere M; Bonnet J
    ACS Synth Biol; 2018 May; 7(5):1406-1412. PubMed ID: 29641183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Methods for the Design of Recombinase Logic Circuits with Adaptable Circuit Specifications.
    Zúñiga A; Bonnet J; Guiziou S
    Methods Mol Biol; 2023; 2553():155-171. PubMed ID: 36227543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational programming of history-dependent logic in cellular populations.
    Zúñiga A; Guiziou S; Mayonove P; Meriem ZB; Camacho M; Moreau V; Ciandrini L; Hersen P; Bonnet J
    Nat Commun; 2020 Sep; 11(1):4758. PubMed ID: 32958811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Logic Synthesis of Recombinase-Based Genetic Circuits.
    Chiu TY; Jiang JR
    Sci Rep; 2017 Oct; 7(1):12873. PubMed ID: 28993615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational Methods for the Design of Recombinase Logic Circuits.
    Guiziou S; Bonnet J
    Methods Mol Biol; 2021; 2189():31-43. PubMed ID: 33180291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic circuits integrating logic and memory in living cells.
    Siuti P; Yazbek J; Lu TK
    Nat Biotechnol; 2013 May; 31(5):448-52. PubMed ID: 23396014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative characterization of recombinase-based digitizer circuits enables predictable amplification of biological signals.
    Kiwimagi KA; Letendre JH; Weinberg BH; Wang J; Chen M; Watanabe L; Myers CJ; Beal J; Wong WW; Weiss R
    Commun Biol; 2021 Jul; 4(1):875. PubMed ID: 34267310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Processing two environmental chemical signals with a synthetic genetic IMPLY gate, a 2-input-2-output integrated logic circuit, and a process pipeline to optimize its systems chemistry in Escherichia coli.
    Mukhopadhyay S; Sarkar K; Srivastava R; Pal A; Bagh S
    Biotechnol Bioeng; 2020 May; 117(5):1502-1512. PubMed ID: 31981217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creating Single-Copy Genetic Circuits.
    Lee JW; Gyorgy A; Cameron DE; Pyenson N; Choi KR; Way JC; Silver PA; Del Vecchio D; Collins JJ
    Mol Cell; 2016 Jul; 63(2):329-336. PubMed ID: 27425413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic Logic Gates Enable Patterning of Amyloid Nanofibers.
    Kalyoncu E; Ahan RE; Ozcelik CE; Seker UOS
    Adv Mater; 2019 Sep; 31(39):e1902888. PubMed ID: 31402516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Synthetic Recombinase-Based Feedback Loop Results in Robust Expression.
    Folliard T; Steel H; Prescott TP; Wadhams G; Rothschild LJ; Papachristodoulou A
    ACS Synth Biol; 2017 Sep; 6(9):1663-1671. PubMed ID: 28602075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic recombinase-based state machines in living cells.
    Roquet N; Soleimany AP; Ferris AC; Aaronson S; Lu TK
    Science; 2016 Jul; 353(6297):aad8559. PubMed ID: 27463678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Genome Manipulation by Variants of Site-Specific Recombinases R and TD.
    Voziyanova E; Anderson RP; Shah R; Li F; Voziyanov Y
    J Mol Biol; 2016 Feb; 428(5 Pt B):990-1003. PubMed ID: 26555749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implementation of stable and complex biological systems through recombinase-assisted genome engineering.
    Santos CN; Regitsky DD; Yoshikuni Y
    Nat Commun; 2013; 4():2503. PubMed ID: 24056574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A RAGE Based Strategy for the Genome Engineering of the Human Respiratory Pathogen
    Garcia-Morales L; Ruiz E; Gourgues G; Rideau F; Piñero-Lambea C; Lluch-Senar M; Blanchard A; Lartigue C
    ACS Synth Biol; 2020 Oct; 9(10):2737-2748. PubMed ID: 33017534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering the logical properties of a genetic AND gate.
    Sayut DJ; Niu Y; Sun L
    Methods Mol Biol; 2011; 743():175-84. PubMed ID: 21553191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering genetic circuits that compute and remember.
    Siuti P; Yazbek J; Lu TK
    Nat Protoc; 2014; 9(6):1292-300. PubMed ID: 24810038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Red recombinase assisted gene replacement in Klebsiella pneumoniae.
    Wei D; Wang M; Shi J; Hao J
    J Ind Microbiol Biotechnol; 2012 Aug; 39(8):1219-26. PubMed ID: 22430500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous non-contiguous deletions using large synthetic DNA and site-specific recombinases.
    Krishnakumar R; Grose C; Haft DH; Zaveri J; Alperovich N; Gibson DG; Merryman C; Glass JI
    Nucleic Acids Res; 2014 Aug; 42(14):e111. PubMed ID: 24914053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.