BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 30692561)

  • 1. HRGPred: Prediction of herbicide resistant genes with k-mer nucleotide compositional features and support vector machine.
    Meher PK; Sahu TK; Raghunandan K; Gahoi S; Choudhury NK; Rao AR
    Sci Rep; 2019 Jan; 9(1):778. PubMed ID: 30692561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ASRmiRNA: Abiotic Stress-Responsive miRNA Prediction in Plants by Using Machine Learning Algorithms with Pseudo
    Meher PK; Begam S; Sahu TK; Gupta A; Kumar A; Kumar U; Rao AR; Singh KP; Dhankher OP
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DIRProt: a computational approach for discriminating insecticide resistant proteins from non-resistant proteins.
    Meher PK; Sahu TK; Banchariya A; Rao AR
    BMC Bioinformatics; 2017 Mar; 18(1):190. PubMed ID: 28340571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. nifPred: Proteome-Wide Identification and Categorization of Nitrogen-Fixation Proteins of Diaztrophs Based on Composition-Transition-Distribution Features Using Support Vector Machine.
    Meher PK; Sahu TK; Mohanty J; Gahoi S; Purru S; Grover M; Rao AR
    Front Microbiol; 2018; 9():1100. PubMed ID: 29896173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A computational approach for prediction of donor splice sites with improved accuracy.
    Meher PK; Sahu TK; Rao AR; Wahi SD
    J Theor Biol; 2016 Sep; 404():285-294. PubMed ID: 27302911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DRPPP: A machine learning based tool for prediction of disease resistance proteins in plants.
    Pal T; Jaiswal V; Chauhan RS
    Comput Biol Med; 2016 Nov; 78():42-48. PubMed ID: 27658260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating the performance of sequence encoding schemes and machine learning methods for splice sites recognition.
    Meher PK; Sahu TK; Gahoi S; Satpathy S; Rao AR
    Gene; 2019 Jul; 705():113-126. PubMed ID: 31009682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ASLncR: a novel computational tool for prediction of abiotic stress-responsive long non-coding RNAs in plants.
    Pradhan UK; Meher PK; Naha S; Rao AR; Gupta A
    Funct Integr Genomics; 2023 Mar; 23(2):113. PubMed ID: 37000299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition.
    Melvin I; Ie E; Kuang R; Weston J; Stafford WN; Leslie C
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S2. PubMed ID: 17570145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ASRpro: A machine-learning computational model for identifying proteins associated with multiple abiotic stress in plants.
    Meher PK; Sahu TK; Gupta A; Kumar A; Rustgi S
    Plant Genome; 2024 Mar; 17(1):e20259. PubMed ID: 36098562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ASmiR: a machine learning framework for prediction of abiotic stress-specific miRNAs in plants.
    Pradhan UK; Meher PK; Naha S; Rao AR; Kumar U; Pal S; Gupta A
    Funct Integr Genomics; 2023 Mar; 23(2):92. PubMed ID: 36939943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A machine-learning approach for predicting palmitoylation sites from integrated sequence-based features.
    Li L; Luo Q; Xiao W; Li J; Zhou S; Li Y; Zheng X; Yang H
    J Bioinform Comput Biol; 2017 Feb; 15(1):1650025. PubMed ID: 27411307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of donor splice sites using support vector machine: a computational approach based on positional, compositional and dependency features.
    Meher PK; Sahu TK; Rao AR; Wahi SD
    Algorithms Mol Biol; 2016; 11():16. PubMed ID: 27252772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou's general PseAAC.
    Meher PK; Sahu TK; Saini V; Rao AR
    Sci Rep; 2017 Feb; 7():42362. PubMed ID: 28205576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An ensemble approach to protein fold classification by integration of template-based assignment and support vector machine classifier.
    Xia J; Peng Z; Qi D; Mu H; Yang J
    Bioinformatics; 2017 Mar; 33(6):863-870. PubMed ID: 28039166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel method for splice sites prediction using sequence component and hidden Markov model.
    Pashaei E; Yilmaz A; Ozen M; Aydin N
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3076-3079. PubMed ID: 28268961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. mLoc-mRNA: predicting multiple sub-cellular localization of mRNAs using random forest algorithm coupled with feature selection via elastic net.
    Meher PK; Rai A; Rao AR
    BMC Bioinformatics; 2021 Jun; 22(1):342. PubMed ID: 34167457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced regulatory sequence prediction using gapped k-mer features.
    Ghandi M; Lee D; Mohammad-Noori M; Beer MA
    PLoS Comput Biol; 2014 Jul; 10(7):e1003711. PubMed ID: 25033408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recombination spot identification Based on gapped k-mers.
    Wang R; Xu Y; Liu B
    Sci Rep; 2016 Mar; 6():23934. PubMed ID: 27030570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ASPTF: A computational tool to predict abiotic stress-responsive transcription factors in plants by employing machine learning algorithms.
    Pradhan UK; Mahapatra A; Naha S; Gupta A; Parsad R; Gahlaut V; Rath SN; Meher PK
    Biochim Biophys Acta Gen Subj; 2024 Jun; 1868(6):130597. PubMed ID: 38490467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.