These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 30692569)

  • 1. A fast and adaptable method for high accuracy integration of the time-dependent Schrödinger equation.
    Wells D; Quiney H
    Sci Rep; 2019 Jan; 9(1):782. PubMed ID: 30692569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical solution of the time-dependent Schrödinger equation for H_{2}^{+} ion with application to high-harmonic generation and above-threshold ionization.
    Fetić B; Milošević DB
    Phys Rev E; 2017 May; 95(5-1):053309. PubMed ID: 28618485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lattice Boltzmann schemes for the nonlinear Schrödinger equation.
    Zhong L; Feng S; Dong P; Gao S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):036704. PubMed ID: 17025783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sixth-order schemes for laser-matter interaction in the Schrödinger equation.
    Singh P
    J Chem Phys; 2019 Apr; 150(15):154111. PubMed ID: 31005117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-reversible and norm-conserving high-order integrators for the nonlinear time-dependent Schrödinger equation: Application to local control theory.
    Roulet J; Vaníček J
    J Chem Phys; 2021 Apr; 154(15):154106. PubMed ID: 33887925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical solutions of the time-dependent Schrödinger equation in two dimensions.
    van Dijk W; Vanderwoerd T; Prins SJ
    Phys Rev E; 2017 Feb; 95(2-1):023310. PubMed ID: 28298000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stable second-order scheme for integrating the Kuramoto-Sivanshinsky equation in polar coordinates using distributed approximating functionals.
    Blomgren P; Gasner S; Palacios A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036701. PubMed ID: 16241608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of numerical approaches to the solution of the time-dependent Schrödinger equation in one dimension.
    Gharibnejad H; Schneider BI; Leadingham M; Schmale HJ
    Comput Phys Commun; 2020; 252():. PubMed ID: 33132403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Symphony on strong field approximation.
    Amini K; Biegert J; Calegari F; Chacón A; Ciappina MF; Dauphin A; Efimov DK; Figueira de Morisson Faria C; Giergiel K; Gniewek P; Landsman AS; Lesiuk M; Mandrysz M; Maxwell AS; Moszyński R; Ortmann L; Antonio Pérez-Hernández J; Picón A; Pisanty E; Prauzner-Bechcicki J; Sacha K; Suárez N; Zaïr A; Zakrzewski J; Lewenstein M
    Rep Prog Phys; 2019 Nov; 82(11):116001. PubMed ID: 31226696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical modeling considerations for an applied nonlinear Schrödinger equation.
    Pitts TA; Laine MR; Schwarz J; Rambo PK; Hautzenroeder BM; Karelitz DB
    Appl Opt; 2015 Feb; 54(6):1426-35. PubMed ID: 25968209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Time Two-Mesh Compact Difference Method for the One-Dimensional Nonlinear Schrödinger Equation.
    He S; Liu Y; Li H
    Entropy (Basel); 2022 Jun; 24(6):. PubMed ID: 35741527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A systematic construction of Gaussian basis sets for the description of laser field ionization and high-harmonic generation.
    Woźniak AP; Lesiuk M; Przybytek M; Efimov DK; Prauzner-Bechcicki JS; Mandrysz M; Ciappina M; Pisanty E; Zakrzewski J; Lewenstein M; Moszyński R
    J Chem Phys; 2021 Mar; 154(9):094111. PubMed ID: 33685145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-dependent
    Coccia E; Luppi E
    J Phys Condens Matter; 2021 Nov; 34(7):. PubMed ID: 34731835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exact transparent boundary condition for the three-dimensional Schrödinger equation in a rectangular cuboid computational domain.
    Feshchenko RM; Popov AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053308. PubMed ID: 24329380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new linearized Crank-Nicolson mixed element scheme for the extended Fisher-Kolmogorov equation.
    Wang J; Li H; He S; Gao W; Liu Y
    ScientificWorldJournal; 2013; 2013():756281. PubMed ID: 23864831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Derivation and application of a Green function propagator suitable for nonparaxial propagation over a two-dimensional domain.
    Capps DM
    J Opt Soc Am A Opt Image Sci Vis; 2019 Apr; 36(4):563-577. PubMed ID: 31044976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Explicit finite-difference vector beam propagation method based on the iterated Crank-Nicolson scheme.
    Yioultsis TV; Ziogos GD; Kriezis EE
    J Opt Soc Am A Opt Image Sci Vis; 2009 Oct; 26(10):2183-91. PubMed ID: 19798397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Initial-value semiclassical propagators for the Wigner phase space representation: Formulation based on the interpretation of the Moyal equation as a Schrödinger equation.
    Koda S
    J Chem Phys; 2015 Dec; 143(24):244110. PubMed ID: 26723654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical solutions of the Schrödinger equation with source terms or time-dependent potentials.
    van Dijk W; Toyama FM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063309. PubMed ID: 25615224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crank-Nicolson method for solving uncertain heat equation.
    Liu J; Hao Y
    Soft comput; 2022; 26(3):937-945. PubMed ID: 35002501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.