BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 30692623)

  • 1. DeepSeqPan, a novel deep convolutional neural network model for pan-specific class I HLA-peptide binding affinity prediction.
    Liu Z; Cui Y; Xiong Z; Nasiri A; Zhang A; Hu J
    Sci Rep; 2019 Jan; 9(1):794. PubMed ID: 30692623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DeepSeqPanII: An Interpretable Recurrent Neural Network Model With Attention Mechanism for Peptide-HLA Class II Binding Prediction.
    Liu Z; Jin J; Cui Y; Xiong Z; Nasiri A; Zhao Y; Hu J
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2188-2196. PubMed ID: 33886473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.
    Han Y; Kim D
    BMC Bioinformatics; 2017 Dec; 18(1):585. PubMed ID: 29281985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating peptides' sequence and energy of contact residues information improves prediction of peptide and HLA-I binding with unknown alleles.
    Luo F; Gao Y; Zhu Y; Liu J
    BMC Bioinformatics; 2013; 14 Suppl 8(Suppl 8):S1. PubMed ID: 23815611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HLA class I binding prediction via convolutional neural networks.
    Vang YS; Xie X
    Bioinformatics; 2017 Sep; 33(17):2658-2665. PubMed ID: 28444127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeepNetBim: deep learning model for predicting HLA-epitope interactions based on network analysis by harnessing binding and immunogenicity information.
    Yang X; Zhao L; Wei F; Li J
    BMC Bioinformatics; 2021 May; 22(1):231. PubMed ID: 33952199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning pan-specific model for interpretable MHC-I peptide binding prediction with improved attention mechanism.
    Jin J; Liu Z; Nasiri A; Cui Y; Louis SY; Zhang A; Zhao Y; Hu J
    Proteins; 2021 Jul; 89(7):866-883. PubMed ID: 33594723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MATHLA: a robust framework for HLA-peptide binding prediction integrating bidirectional LSTM and multiple head attention mechanism.
    Ye Y; Wang J; Xu Y; Wang Y; Pan Y; Song Q; Liu X; Wan J
    BMC Bioinformatics; 2021 Jan; 22(1):7. PubMed ID: 33407098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. sNebula, a network-based algorithm to predict binding between human leukocyte antigens and peptides.
    Luo H; Ye H; Ng HW; Sakkiah S; Mendrick DL; Hong H
    Sci Rep; 2016 Aug; 6():32115. PubMed ID: 27558848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved pan-specific MHC class I peptide-binding predictions using a novel representation of the MHC-binding cleft environment.
    Carrasco Pro S; Zimic M; Nielsen M
    Tissue Antigens; 2014 Feb; 83(2):94-100. PubMed ID: 24447175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.
    Hattotuwagama CK; Doytchinova IA; Flower DR
    Methods Mol Biol; 2007; 409():227-45. PubMed ID: 18450004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PromPDD, a web-based tool for the prediction, deciphering and design of promiscuous peptides that bind to HLA class I molecules.
    Zhang S; Chen J; Hong P; Li J; Tian Y; Wu Y; Wang S
    J Immunol Methods; 2020 Jan; 476():112685. PubMed ID: 31678214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-Scale Structure-Based Prediction of Stable Peptide Binding to Class I HLAs Using Random Forests.
    Abella JR; Antunes DA; Clementi C; Kavraki LE
    Front Immunol; 2020; 11():1583. PubMed ID: 32793224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding and predicting binding between human leukocyte antigens (HLAs) and peptides by network analysis.
    Luo H; Ye H; Ng H; Shi L; Tong W; Mattes W; Mendrick D; Hong H
    BMC Bioinformatics; 2015; 16 Suppl 13(Suppl 13):S9. PubMed ID: 26424483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural prediction of peptides binding to MHC class I molecules.
    Bui HH; Schiewe AJ; von Grafenstein H; Haworth IS
    Proteins; 2006 Apr; 63(1):43-52. PubMed ID: 16447245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IConMHC: a deep learning convolutional neural network model to predict peptide and MHC-I binding affinity.
    Pei B; Hsu YH
    Immunogenetics; 2020 Jul; 72(5):295-304. PubMed ID: 32577798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the prediction of HLA class I-binding peptides using a supertype-based method.
    Wang S; Bai Z; Han J; Tian Y; Shang X; Wang L; Li J; Wu Y
    J Immunol Methods; 2014 Mar; 405():109-20. PubMed ID: 24508661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MHCAttnNet: predicting MHC-peptide bindings for MHC alleles classes I and II using an attention-based deep neural model.
    Venkatesh G; Grover A; Srinivasaraghavan G; Rao S
    Bioinformatics; 2020 Jul; 36(Suppl_1):i399-i406. PubMed ID: 32657386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ACME: pan-specific peptide-MHC class I binding prediction through attention-based deep neural networks.
    Hu Y; Wang Z; Hu H; Wan F; Chen L; Xiong Y; Wang X; Zhao D; Huang W; Zeng J
    Bioinformatics; 2019 Dec; 35(23):4946-4954. PubMed ID: 31120490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide binding to MHC class I molecules: implications for antigenic peptide prediction.
    Parker KC; Shields M; DiBrino M; Brooks A; Coligan JE
    Immunol Res; 1995; 14(1):34-57. PubMed ID: 7561340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.