BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 30692933)

  • 1. Non-reversible and Reversible Heat Tolerance Plasticity in Tropical Intertidal Animals: Responding to Habitat Temperature Heterogeneity.
    Brahim A; Mustapha N; Marshall DJ
    Front Physiol; 2018; 9():1909. PubMed ID: 30692933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in heat tolerance plasticity between supratidal and intertidal snails indicate complex responses to microhabitat temperature variation.
    Brahim A; Marshall DJ
    J Therm Biol; 2020 Jul; 91():102620. PubMed ID: 32716870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substantial heat tolerance acclimation capacity in tropical thermophilic snails, but to what benefit?
    Marshall DJ; Brahim A; Mustapha N; Dong Y; Sinclair BJ
    J Exp Biol; 2018 Nov; 221(Pt 22):. PubMed ID: 30291160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gross mismatch between thermal tolerances and environmental temperatures in a tropical freshwater snail: climate warming and evolutionary implications.
    Polgar G; Khang TF; Chua T; Marshall DJ
    J Therm Biol; 2015 Jan; 47():99-108. PubMed ID: 25526660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High Heat Tolerance Is Negatively Correlated with Heat Tolerance Plasticity in Nudibranch Mollusks.
    Armstrong EJ; Tanner RL; Stillman JH
    Physiol Biochem Zool; 2019; 92(4):430-444. PubMed ID: 31192766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal tolerance and climate warming sensitivity in tropical snails.
    Marshall DJ; Rezende EL; Baharuddin N; Choi F; Helmuth B
    Ecol Evol; 2015 Dec; 5(24):5905-19. PubMed ID: 26811764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal adaptation in the intertidal snail Echinolittorina malaccana contradicts current theory by revealing the crucial roles of resting metabolism.
    Marshall DJ; Dong YW; McQuaid CD; Williams GA
    J Exp Biol; 2011 Nov; 214(Pt 21):3649-57. PubMed ID: 21993794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional gel analysis of the heat-shock response in marine snails (genus Tegula): interspecific variation in protein expression and acclimation ability.
    Tomanek L
    J Exp Biol; 2005 Aug; 208(Pt 16):3133-43. PubMed ID: 16081611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary and acclimation-induced variation in the heat-shock responses of congeneric marine snails (genus Tegula) from different thermal habitats: implications for limits of thermotolerance and biogeography.
    Tomanek L; Somero GN
    J Exp Biol; 1999; 202(Pt 21):2925-2936. PubMed ID: 10518474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Causes and consequences of thermal tolerance limits in rocky intertidal porcelain crabs, genus petrolisthes.
    Stillman JH
    Integr Comp Biol; 2002 Aug; 42(4):790-6. PubMed ID: 21708777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of balancing selection and microhabitat temperature variations on heat tolerance of the intertidal black mussel Septifer virgatus.
    Han G; Wang W; Dong Y
    Integr Zool; 2020 Sep; 15(5):416-427. PubMed ID: 32297470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surviving hot summer: Roles of phenotypic plasticity of intertidal mobile species considering microhabitat environmental heterogeneity.
    Sun YX; Hu LS; Dong YW
    J Therm Biol; 2023 Oct; 117():103686. PubMed ID: 37669600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasticity of thermal tolerance and its relationship with growth rate in juvenile mussels (
    Gleason LU; Strand EL; Hizon BJ; Dowd WW
    Proc Biol Sci; 2018 Apr; 285(1877):. PubMed ID: 29669896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upper thermal tolerance plasticity in tropical amphibian species from contrasting habitats: implications for warming impact prediction.
    Simon MN; Ribeiro PL; Navas CA
    J Therm Biol; 2015 Feb; 48():36-44. PubMed ID: 25660628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of thermal microenvironment in upper thermal tolerance plasticity in tropical tadpoles. Implications for vulnerability to climate warming.
    Turriago JL; Tejedo M; Hoyos JM; Bernal MH
    J Exp Zool A Ecol Integr Physiol; 2022 Aug; 337(7):746-759. PubMed ID: 35674344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diminished warming tolerance and plasticity in low-latitude populations of a marine gastropod.
    Villeneuve AR; Komoroske LM; Cheng BS
    Conserv Physiol; 2021; 9(1):coab039. PubMed ID: 34136259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High thermal stress responses of Echinolittorina snails at their range edge predict population vulnerability to future warming.
    Han GD; Cartwright SR; Ganmanee M; Chan BKK; Adzis KAA; Hutchinson N; Wang J; Hui TY; Williams GA; Dong YW
    Sci Total Environ; 2019 Jan; 647():763-771. PubMed ID: 30092533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenotypic plasticity is not a cline: Thermal physiology of an intertidal barnacle over 20° of latitude.
    Broitman BR; Lagos NA; Opitz T; Figueroa D; Maldonado K; Ricote N; Lardies MA
    J Anim Ecol; 2021 Aug; 90(8):1961-1972. PubMed ID: 33942301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. No evidence for homeoviscous adaptation in intertidal snails: analysis of membrane fluidity during thermal acclimation, thermal acclimatization, and across thermal microhabitats.
    Rais A; Miller N; Stillman JH
    Mar Biol; 2010; 157(11):2407-2414. PubMed ID: 24391251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of tidal regime on the thermal tolerance of the marine gastropod Lunella smaragda (Gmelin 1791).
    Mortensen BJ; Dunphy BJ
    J Therm Biol; 2016 Aug; 60():186-94. PubMed ID: 27503732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.