These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 30693047)

  • 1. Control of Blood Glucose for Type-1 Diabetes by Using Reinforcement Learning with Feedforward Algorithm.
    Ngo PD; Wei S; Holubová A; Muzik J; Godtliebsen F
    Comput Math Methods Med; 2018; 2018():4091497. PubMed ID: 30693047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subcutaneous insulin administration by deep reinforcement learning for blood glucose level control of type-2 diabetic patients.
    Raheb MA; Niazmand VR; Eqra N; Vatankhah R
    Comput Biol Med; 2022 Sep; 148():105860. PubMed ID: 35868044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance Analysis of Fuzzy-PID Controller for Blood Glucose Regulation in Type-1 Diabetic Patients.
    Yadav J; Rani A; Singh V
    J Med Syst; 2016 Dec; 40(12):254. PubMed ID: 27714563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A robust sliding mode controller with internal model for closed-loop artificial pancreas.
    Abu-Rmileh A; Garcia-Gabin W; Zambrano D
    Med Biol Eng Comput; 2010 Dec; 48(12):1191-201. PubMed ID: 20658267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A bio-inspired glucose controller based on pancreatic β-cell physiology.
    Herrero P; Georgiou P; Oliver N; Johnston DG; Toumazou C
    J Diabetes Sci Technol; 2012 May; 6(3):606-16. PubMed ID: 22768892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An iterative learning strategy for the auto-tuning of the feedforward and feedback controller in type-1 diabetes.
    Fravolini ML; Fabietti PG
    Comput Methods Biomech Biomed Engin; 2014; 17(13):1464-82. PubMed ID: 23282162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A PI-fuzzy logic controller for the regulation of blood glucose level in diabetic patients.
    Ibbini M
    J Med Eng Technol; 2006; 30(2):83-92. PubMed ID: 16531347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing automatic closed-loop glucose control in type 1 diabetes with an adaptive meal bolus calculator - in silico evaluation under intra-day variability.
    Herrero P; Bondia J; Adewuyi O; Pesl P; El-Sharkawy M; Reddy M; Toumazou C; Oliver N; Georgiou P
    Comput Methods Programs Biomed; 2017 Jul; 146():125-131. PubMed ID: 28688482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Improved PID Algorithm Based on Insulin-on-Board Estimate for Blood Glucose Control with Type 1 Diabetes.
    Hu R; Li C
    Comput Math Methods Med; 2015; 2015():281589. PubMed ID: 26550021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Variable State Dimension Approach to Meal Detection and Meal Size Estimation: In Silico Evaluation Through Basal-Bolus Insulin Therapy for Type 1 Diabetes.
    Xie J; Wang Q
    IEEE Trans Biomed Eng; 2017 Jun; 64(6):1249-1260. PubMed ID: 28541188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probabilistic evolving meal detection and estimation of meal total glucose appearance.
    Cameron F; Niemeyer G; Buckingham BA
    J Diabetes Sci Technol; 2009 Sep; 3(5):1022-30. PubMed ID: 20144415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An adaptive technique based blood glucose control in type-1 diabetes mellitus patients.
    Belmon AP; Auxillia J
    Int J Numer Method Biomed Eng; 2020 Aug; 36(8):e3371. PubMed ID: 32453489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining basal-bolus insulin infusion for tight postprandial glucose control: an in silico evaluation in adults, children, and adolescents.
    Revert A; Rossetti P; Calm R; Vehí J; Bondia J
    J Diabetes Sci Technol; 2010 Nov; 4(6):1424-37. PubMed ID: 21129338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model-based algorithm for blood glucose control in type I diabetic patients.
    Parker RS; Doyle FJ; Peppas NA
    IEEE Trans Biomed Eng; 1999 Feb; 46(2):148-57. PubMed ID: 9932336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Actor-Critic based controller for glucose regulation in type 1 diabetes.
    Daskalaki E; Diem P; Mougiakakou SG
    Comput Methods Programs Biomed; 2013 Feb; 109(2):116-25. PubMed ID: 22502983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control-relevant models for glucose control using a priori patient characteristics.
    van Heusden K; Dassau E; Zisser HC; Seborg DE; Doyle FJ
    IEEE Trans Biomed Eng; 2012 Jul; 59(7):1839-49. PubMed ID: 22127988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fuzzy-based controller for glucose regulation in type-1 diabetic patients by subcutaneous route.
    Campos-Delgado DU; Hernández-Ordoñez M; Femat R; Gordillo-Moscoso A
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2201-10. PubMed ID: 17073325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic bolus and adaptive basal algorithm for the artificial pancreatic β-cell.
    Wang Y; Dassau E; Zisser H; Jovanovič L; Doyle FJ
    Diabetes Technol Ther; 2010 Nov; 12(11):879-87. PubMed ID: 20879966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of an online-tuned model based compound controller for a fully automated artificial pancreas.
    Bhattacharjee A; Easwaran A; Leow MK; Cho N
    Med Biol Eng Comput; 2019 Jul; 57(7):1437-1449. PubMed ID: 30895514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved PID switching control strategy for type 1 diabetes.
    Marchetti G; Barolo M; Jovanovic L; Zisser H; Seborg DE
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):857-65. PubMed ID: 18334377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.