These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 30693619)

  • 1. Towards DNA Nanomachines for Cancer Treatment: Achieving Selective and Efficient Cleavage of Folded RNA.
    Nedorezova DD; Fakhardo AF; Nemirich DV; Bryushkova EA; Kolpashchikov DM
    Angew Chem Int Ed Engl; 2019 Mar; 58(14):4654-4658. PubMed ID: 30693619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deoxyribozyme-Based DNA Machines for Cancer Therapy.
    Nedorezova DD; Fakhardo AF; Molden TA; Kolpashchikov DM
    Chembiochem; 2020 Mar; 21(5):607-611. PubMed ID: 31553102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cleaving Folded RNA by Multifunctional DNAzyme Nanomachines.
    Nedorezova DD; Dubovichenko MV; Eldeeb AA; Nur MAY; Bobkov GA; Ashmarova AI; Kalnin AJ; Kolpashchikov DM
    Chemistry; 2024 Jul; 30(40):e202401580. PubMed ID: 38757205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multivalent DNAzyme agents for cleaving folded RNA.
    Dubovichenko MV; Batsa M; Bobkov GA; Vlasov GS; El-Deeb AA; Kolpashchikov DM
    Nucleic Acids Res; 2024 Jun; 52(10):5866-5879. PubMed ID: 38661191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bifunctional RNA-Targeting Deoxyribozyme Nanodevice as a Potential Theranostic Agent.
    Spelkov AA; Goncharova EA; Savin AM; Kolpashchikov DM
    Chemistry; 2020 Mar; 26(16):3489-3493. PubMed ID: 31943434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Integrated, Biostable, and Self-Powered DNA Motor Enabling Autonomous Operation in Living Bodies.
    Wang J; Wang DX; Tang AN; Kong DM
    Anal Chem; 2019 Apr; 91(8):5244-5251. PubMed ID: 30883097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA-Cleaving DNA Thresholder Controlled by Concentrations of miRNA Cancer Marker.
    Gomes de Oliveira AG; Dubovichenko MV; ElDeeb AA; Wanjohi J; Zablotskaya S; Kolpashchikov DM
    Chembiochem; 2021 May; 22(10):1750-1754. PubMed ID: 33433948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. mRNA-Activated Multifunctional DNAzyme Nanotweezer for Intracellular mRNA Sensing and Gene Therapy.
    He M; He M; Nie C; Yi J; Zhang J; Chen T; Chu X
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8015-8025. PubMed ID: 33561348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro selection, characterization, and application of deoxyribozymes that cleave RNA.
    Silverman SK
    Nucleic Acids Res; 2005; 33(19):6151-63. PubMed ID: 16286368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of Hybridization Probes to DNA Machines and Robots.
    Kolpashchikov DM
    Acc Chem Res; 2019 Jul; 52(7):1949-1956. PubMed ID: 31243970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cut and Paste for Cancer Treatment: A DNA Nanodevice that Cuts Out an RNA Marker Sequence to Activate a Therapeutic Function.
    Molden TA; Niccum CT; Kolpashchikov DM
    Angew Chem Int Ed Engl; 2020 Nov; 59(47):21190-21194. PubMed ID: 32687686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Target induced reconstruction of DNAzymatic amplifier nanomachines in living cells for concurrent imaging and gene silencing.
    Li JJ; Li WN; Du WF; Lv MM; Wu ZK; Jiang JH
    Chem Commun (Camb); 2018 Sep; 54(75):10626-10629. PubMed ID: 30178789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cleaving Folded RNA with DNAzyme Agents.
    Nedorezova DD; Dubovichenko MV; Kalnin AJ; Nour MAY; Eldeeb AA; Ashmarova AI; Kurbanov GF; Kolpashchikov DM
    Chembiochem; 2024 Jan; 25(1):e202300637. PubMed ID: 37870555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of a DNA catalyst.
    Ponce-Salvatierra A; Wawrzyniak-Turek K; Steuerwald U; Höbartner C; Pena V
    Nature; 2016 Jan; 529(7585):231-4. PubMed ID: 26735012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deoxyribozyme-loaded nano-graphene oxide for simultaneous sensing and silencing of the hepatitis C virus gene in liver cells.
    Kim S; Ryoo SR; Na HK; Kim YK; Choi BS; Lee Y; Kim DE; Min DH
    Chem Commun (Camb); 2013 Sep; 49(74):8241-3. PubMed ID: 23926597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting insulin-like growth factor I with 10-23 DNAzymes: 2'-O-methyl modifications in the catalytic core enhance mRNA cleavage.
    Fokina AA; Meschaninova MI; Durfort T; Venyaminova AG; François JC
    Biochemistry; 2012 Mar; 51(11):2181-91. PubMed ID: 22352843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro evolution of an RNA-cleaving DNA enzyme into an RNA ligase switches the selectivity from 3'-5' to 2'-5'.
    Flynn-Charlebois A; Prior TK; Hoadley KA; Silverman SK
    J Am Chem Soc; 2003 May; 125(18):5346-50. PubMed ID: 12720447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA-enzyme-mediated cleavage of human immunodeficiency virus type 1 Gag RNA is significantly augmented by antisense-DNA molecules targeted to hybridize close to the cleavage site.
    Sood V; Gupta N; Bano AS; Banerjea AC
    Oligonucleotides; 2007; 17(1):113-21. PubMed ID: 17461768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of an RNA-cleaving deoxyribozyme with optimal activity at pH 5.
    Kandadai SA; Mok WW; Ali MM; Li Y
    Biochemistry; 2009 Aug; 48(31):7383-91. PubMed ID: 19583262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and kinetic analysis of hammerhead ribozyme and DNAzyme that specifically cleave TEL-AML1 chimeric mRNA.
    Choi WH; Choi BR; Kim JH; Yeo WS; Oh S; Kim DE
    Biochem Biophys Res Commun; 2008 Sep; 374(1):169-74. PubMed ID: 18627769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.