BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 30693769)

  • 1. Secondary Orbital Interactions Enhance the Reactivity of Alkynes in Diels-Alder Cycloadditions.
    Levandowski BJ; Svatunek D; Sohr B; Mikula H; Houk KN
    J Am Chem Soc; 2019 Feb; 141(6):2224-2227. PubMed ID: 30693769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical elucidation of the origins of substituent and strain effects on the rates of Diels-Alder reactions of 1,2,4,5-tetrazines.
    Liu F; Liang Y; Houk KN
    J Am Chem Soc; 2014 Aug; 136(32):11483-93. PubMed ID: 25041719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catching up with tetrazines: coordination of Re(I) to 1,2,4-triazine facilitates an inverse electron demand Diels-Alder reaction with strained alkynes to a greater extent than in corresponding 1,2,4,5-tetrazines.
    Sims M; Kyriakou S; Matthews A; Deary ME; Kozhevnikov VN
    Dalton Trans; 2023 Aug; 52(31):10927-10932. PubMed ID: 37489645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trans-cyclooctene tag with improved properties for tumor pretargeting with the diels-alder reaction.
    Rossin R; van Duijnhoven SM; Läppchen T; van den Bosch SM; Robillard MS
    Mol Pharm; 2014 Sep; 11(9):3090-6. PubMed ID: 25077373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation-strain analysis reveals unexpected origin of fast reactivity in heteroaromatic azadiene inverse-electron-demand diels-alder cycloadditions.
    Talbot A; Devarajan D; Gustafson SJ; Fernández I; Bickelhaupt FM; Ess DH
    J Org Chem; 2015 Jan; 80(1):548-58. PubMed ID: 25490250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Orbital Interactions and Activation Strain (Distortion Energies) on Reactivities in the Normal and Inverse Electron-Demand Cycloadditions of Strained and Unstrained Cycloalkenes.
    Levandowski BJ; Hamlin TA; Bickelhaupt FM; Houk KN
    J Org Chem; 2017 Aug; 82(16):8668-8675. PubMed ID: 28712288
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Spampinato A; Kužmová E; Pohl R; Sýkorová V; Vrábel M; Kraus T; Hocek M
    Bioconjug Chem; 2023 Mar; 34(4):772-80. PubMed ID: 36972479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origins of the Endo and Exo Selectivities in Cyclopropenone, Iminocyclopropene, and Triafulvene Diels-Alder Cycloadditions.
    Levandowski BJ; Hamlin TA; Helgeson RC; Bickelhaupt FM; Houk KN
    J Org Chem; 2018 Mar; 83(6):3164-3170. PubMed ID: 29470085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioorthogonal Cycloadditions: Computational Analysis with the Distortion/Interaction Model and Predictions of Reactivities.
    Liu F; Liang Y; Houk KN
    Acc Chem Res; 2017 Sep; 50(9):2297-2308. PubMed ID: 28876890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substituent Effects in Bioorthogonal Diels-Alder Reactions of 1,2,4,5-Tetrazines.
    Houszka N; Mikula H; Svatunek D
    Chemistry; 2023 May; 29(29):e202300345. PubMed ID: 36853623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ruthenium-catalyzed homo Diels-Alder [2 + 2 + 2] cycloadditions of alkynyl phosphonates with bicyclo[2.2.1]hepta-2,5-diene.
    Kettles TJ; Cockburn N; Tam W
    J Org Chem; 2011 Aug; 76(16):6951-7. PubMed ID: 21732634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of IEDDA bioorthogonal system: Efficient process to improve trans-cyclooctene/tetrazine interaction.
    Béquignat JB; Ty N; Rondon A; Taiariol L; Degoul F; Canitrot D; Quintana M; Navarro-Teulon I; Miot-Noirault E; Boucheix C; Chezal JM; Moreau E
    Eur J Med Chem; 2020 Oct; 203():112574. PubMed ID: 32683167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [
    García-Vázquez R; Battisti UM; Shalgunov V; Schäfer G; Barz M; Herth MM
    Macromol Rapid Commun; 2022 Jun; 43(12):e2100655. PubMed ID: 34888977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clicking 1,2,4,5-tetrazine and cyclooctynes with tunable reaction rates.
    Chen W; Wang D; Dai C; Hamelberg D; Wang B
    Chem Commun (Camb); 2012 Feb; 48(12):1736-8. PubMed ID: 22159330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regioselective Inverse Electron Demand Diels-Alder Reactions of N-Acyl 6-Amino-3-(methylthio)-1,2,4,5-tetrazines.
    Boger DL; Schaum RP; Garbaccio RM
    J Org Chem; 1998 Sep; 63(18):6329-6337. PubMed ID: 11672266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IEDDA: An Attractive Bioorthogonal Reaction for Biomedical Applications.
    Handula M; Chen KT; Seimbille Y
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a novel antibody-tetrazine conjugate for bioorthogonal pretargeting.
    Maggi A; Ruivo E; Fissers J; Vangestel C; Chatterjee S; Joossens J; Sobott F; Staelens S; Stroobants S; Van Der Veken P; Wyffels L; Augustyns K
    Org Biomol Chem; 2016 Aug; 14(31):7544-51. PubMed ID: 27431745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inverse-electron demand Diels Alder Reactions between glycals and tetrazines.
    Marzabadi CH; Kelty SP; Altamura A
    Carbohydr Res; 2022 Sep; 519():108623. PubMed ID: 35738050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemiluminescent probe for the detection of inverse electron demand Diels-Alder reaction between tetrazine and trans-Cyclooctene.
    Wu K; Royzen M
    Bioorg Med Chem; 2021 Oct; 47():116400. PubMed ID: 34530297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diels-Alder Reactivities of Benzene, Pyridine, and Di-, Tri-, and Tetrazines: The Roles of Geometrical Distortions and Orbital Interactions.
    Yang YF; Liang Y; Liu F; Houk KN
    J Am Chem Soc; 2016 Feb; 138(5):1660-7. PubMed ID: 26804318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.