BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 30693769)

  • 21. Design, Synthesis, Conjugation, and Reactivity of Novel
    Longo B; Zanato C; Piras M; Dall'Angelo S; Windhorst AD; Vugts DJ; Baldassarre M; Zanda M
    Bioconjug Chem; 2020 Sep; 31(9):2201-2210. PubMed ID: 32786505
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Clip to Click: Controlling Inverse Electron-Demand Diels-Alder Reactions with Macrocyclic Tetrazines.
    Novianti I; Kowada T; Mizukami S
    Org Lett; 2022 May; 24(17):3223-3226. PubMed ID: 35446571
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrophilic Azides for Materials Synthesis and Chemical Biology.
    Xie S; Sundhoro M; Houk KN; Yan M
    Acc Chem Res; 2020 Apr; 53(4):937-948. PubMed ID: 32207916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Copper-free click reactions with polar bicyclononyne derivatives for modulation of cellular imaging.
    Leunissen EH; Meuleners MH; Verkade JM; Dommerholt J; Hoenderop JG; van Delft FL
    Chembiochem; 2014 Jul; 15(10):1446-51. PubMed ID: 24904006
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of the inverse electron demand Diels-Alder reaction in rats using a scandium-44-labelled tetrazine for pretargeted PET imaging.
    Edem PE; Sinnes JP; Pektor S; Bausbacher N; Rossin R; Yazdani A; Miederer M; Kjær A; Valliant JF; Robillard MS; Rösch F; Herth MM
    EJNMMI Res; 2019 May; 9(1):49. PubMed ID: 31140047
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis, Characterization, and Cycloaddition Reactivity of a Monocyclic Aromatic 1,2,3,5-Tetrazine.
    Wu ZC; Boger DL
    J Am Chem Soc; 2019 Oct; 141(41):16388-16397. PubMed ID: 31524389
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An Extended Approach for the Development of Fluorogenic trans-Cyclooctene-Tetrazine Cycloadditions.
    Siegl SJ; Galeta J; Dzijak R; Vázquez A; Del Río-Villanueva M; Dračínský M; Vrabel M
    Chembiochem; 2019 Apr; 20(7):886-890. PubMed ID: 30561884
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Micro-flow photosynthesis of new dienophiles for inverse-electron-demand Diels-Alder reactions. Potential applications for pretargeted
    Billaud EMF; Shahbazali E; Ahamed M; Cleeren F; Noël T; Koole M; Verbruggen A; Hessel V; Bormans G
    Chem Sci; 2017 Feb; 8(2):1251-1258. PubMed ID: 28451267
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetic Encoding of bicyclononynes and trans-cyclooctenes for site-specific protein labeling in vitro and in live mammalian cells via rapid fluorogenic Diels-Alder reactions.
    Lang K; Davis L; Wallace S; Mahesh M; Cox DJ; Blackman ML; Fox JM; Chin JW
    J Am Chem Soc; 2012 Jun; 134(25):10317-20. PubMed ID: 22694658
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cycloaddition Reactivities Analyzed by Energy Decomposition Analyses and the Frontier Molecular Orbital Model.
    Sengupta A; Li B; Svatunek D; Liu F; Houk KN
    Acc Chem Res; 2022 Sep; 55(17):2467-2479. PubMed ID: 36007242
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Site-Specific Glycoconjugation of Protein via Bioorthogonal Tetrazine Cycloaddition with a Genetically Encoded trans-Cyclooctene or Bicyclononyne.
    Machida T; Lang K; Xue L; Chin JW; Winssinger N
    Bioconjug Chem; 2015 May; 26(5):802-6. PubMed ID: 25897481
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemistry at the Dirac point: Diels-Alder reactivity of graphene.
    Sarkar S; Bekyarova E; Haddon RC
    Acc Chem Res; 2012 Apr; 45(4):673-82. PubMed ID: 22404165
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Labeling a TCO-functionalized single domain antibody fragment with
    Zhou Z; Zalutsky MR; Vaidyanathan G
    Bioorg Med Chem; 2020 Sep; 28(17):115634. PubMed ID: 32773089
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluorescence Quenching Effects of Tetrazines and Their Diels-Alder Products: Mechanistic Insight Toward Fluorogenic Efficiency.
    Pinto-Pacheco B; Carbery WP; Khan S; Turner DB; Buccella D
    Angew Chem Int Ed Engl; 2020 Dec; 59(49):22140-22149. PubMed ID: 33245600
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetic encoding of a bicyclo[6.1.0]nonyne-charged amino acid enables fast cellular protein imaging by metal-free ligation.
    Borrmann A; Milles S; Plass T; Dommerholt J; Verkade JM; Wiessler M; Schultz C; van Hest JC; van Delft FL; Lemke EA
    Chembiochem; 2012 Sep; 13(14):2094-9. PubMed ID: 22945333
    [TBL] [Abstract][Full Text] [Related]  

  • 36. How Ionization Catalyzes Diels-Alder Reactions.
    Vermeeren P; Hamlin TA; Bickelhaupt FM
    Chemistry; 2022 Jul; 28(40):e202200987. PubMed ID: 35442551
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cycloadditions of cyclohexynes and cyclopentyne.
    Medina JM; McMahon TC; Jiménez-Osés G; Houk KN; Garg NK
    J Am Chem Soc; 2014 Oct; 136(42):14706-9. PubMed ID: 25283710
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A computational model to predict the Diels-Alder reactivity of aryl/alkyl-substituted tetrazines.
    Svatunek D; Denk C; Mikula H
    Monatsh Chem; 2018; 149(4):833-837. PubMed ID: 29681659
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanism-Based Fluorogenic trans-Cyclooctene-Tetrazine Cycloaddition.
    Vázquez A; Dzijak R; Dračínský M; Rampmaier R; Siegl SJ; Vrabel M
    Angew Chem Int Ed Engl; 2017 Jan; 56(5):1334-1337. PubMed ID: 28026913
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The inverse electron-demand Diels-Alder reaction as a new methodology for the synthesis of
    Poty S; Membreno R; Glaser JM; Ragupathi A; Scholz WW; Zeglis BM; Lewis JS
    Chem Commun (Camb); 2018 Mar; 54(21):2599-2602. PubMed ID: 29388990
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.