These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 30694129)

  • 1. Plant Disease Detection by Imaging Sensors - Parallels and Specific Demands for Precision Agriculture and Plant Phenotyping.
    Mahlein AK
    Plant Dis; 2016 Feb; 100(2):241-251. PubMed ID: 30694129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active and Passive Electro-Optical Sensors for Health Assessment in Food Crops.
    Fahey T; Pham H; Gardi A; Sabatini R; Stefanelli D; Goodwin I; Lamb DW
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33383831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensor-based phenotyping of above-ground plant-pathogen interactions.
    Tanner F; Tonn S; de Wit J; Van den Ackerveken G; Berger B; Plett D
    Plant Methods; 2022 Mar; 18(1):35. PubMed ID: 35313920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperspectral Sensors and Imaging Technologies in Phytopathology: State of the Art.
    Mahlein AK; Kuska MT; Behmann J; Polder G; Walter A
    Annu Rev Phytopathol; 2018 Aug; 56():535-558. PubMed ID: 30149790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remote Sensing of Diseases.
    Oerke EC
    Annu Rev Phytopathol; 2020 Aug; 58():225-252. PubMed ID: 32853102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping.
    Guo Q; Wu F; Pang S; Zhao X; Chen L; Liu J; Xue B; Xu G; Li L; Jing H; Chu C
    Sci China Life Sci; 2018 Mar; 61(3):328-339. PubMed ID: 28616808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses - a review.
    Humplík JF; Lazár D; Husičková A; Spíchal L
    Plant Methods; 2015; 11():29. PubMed ID: 25904970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review of hyperspectral image analysis techniques for plant disease detection and identif ication.
    Cheshkova AF
    Vavilovskii Zhurnal Genet Selektsii; 2022 Mar; 26(2):202-213. PubMed ID: 35434482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a Target-to-Sensor Mode Multispectral Imaging Device for High-Throughput and High-Precision Touch-Based Leaf-Scale Soybean Phenotyping.
    Li X; Chen Z; Wei X; Zhao T; Jin J
    Sensors (Basel); 2023 Apr; 23(7):. PubMed ID: 37050815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-cost and automated phenotyping system "Phenomenon" for multi-sensor in situ monitoring in plant in vitro culture.
    Bethge H; Winkelmann T; Lüdeke P; Rath T
    Plant Methods; 2023 May; 19(1):42. PubMed ID: 37131210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant Disease Sensing: Studying Plant-Pathogen Interactions at Scale.
    Gold KM
    mSystems; 2021 Dec; 6(6):e0122821. PubMed ID: 34783579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain: A review.
    Berger K; Machwitz M; Kycko M; Kefauver SC; Van Wittenberghe S; Gerhards M; Verrelst J; Atzberger C; van der Tol C; Damm A; Rascher U; Herrmann I; Paz VS; Fahrner S; Pieruschka R; Prikaziuk E; Buchaillot ML; Halabuk A; Celesti M; Koren G; Gormus ET; Rossini M; Foerster M; Siegmann B; Abdelbaki A; Tagliabue G; Hank T; Darvishzadeh R; Aasen H; Garcia M; Pôças I; Bandopadhyay S; Sulis M; Tomelleri E; Rozenstein O; Filchev L; Stancile G; Schlerf M
    Remote Sens Environ; 2022 Oct; 280():113198. PubMed ID: 36090616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving High-Throughput Phenotyping Using Fusion of Close-Range Hyperspectral Camera and Low-Cost Depth Sensor.
    Huang P; Luo X; Jin J; Wang L; Zhang L; Liu J; Zhang Z
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30126148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of imaging techniques for plant phenotyping.
    Li L; Zhang Q; Huang D
    Sensors (Basel); 2014 Oct; 14(11):20078-111. PubMed ID: 25347588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative and qualitative phenotyping of disease resistance of crops by hyperspectral sensors: seamless interlocking of phytopathology, sensors, and machine learning is needed!
    Mahlein AK; Kuska MT; Thomas S; Wahabzada M; Behmann J; Rascher U; Kersting K
    Curr Opin Plant Biol; 2019 Aug; 50():156-162. PubMed ID: 31387067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing RGB-D Sensors for Close Range Outdoor Agricultural Phenotyping.
    Vit A; Shani G
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30551636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Low-Cost Approach to Automatically Obtain Accurate 3D Models of Woody Crops.
    Bengochea-Guevara JM; Andújar D; Sanchez-Sardana FL; Cantuña K; Ribeiro A
    Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29295536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multicolor Fluorescence Imaging as a Candidate for Disease Detection in Plant Phenotyping.
    Pérez-Bueno ML; Pineda M; Cabeza FM; Barón M
    Front Plant Sci; 2016; 7():1790. PubMed ID: 27994607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applications of UAS in Crop Biomass Monitoring: A Review.
    Wang T; Liu Y; Wang M; Fan Q; Tian H; Qiao X; Li Y
    Front Plant Sci; 2021; 12():616689. PubMed ID: 33897719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specim IQ: Evaluation of a New, Miniaturized Handheld Hyperspectral Camera and Its Application for Plant Phenotyping and Disease Detection.
    Behmann J; Acebron K; Emin D; Bennertz S; Matsubara S; Thomas S; Bohnenkamp D; Kuska MT; Jussila J; Salo H; Mahlein AK; Rascher U
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29393921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.