These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 30694386)

  • 21. Effects of Two Hours of Heavy-Intensity Exercise on the Power-Duration Relationship.
    Clark IE; Vanhatalo A; Bailey SJ; Wylie LJ; Kirby BS; Wilkins BW; Jones AM
    Med Sci Sports Exerc; 2018 Aug; 50(8):1658-1668. PubMed ID: 29521722
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prior upper body exercise reduces cycling work capacity but not critical power.
    Johnson MA; Mills DE; Brown PI; Sharpe GR
    Med Sci Sports Exerc; 2014 Apr; 46(4):802-8. PubMed ID: 24042306
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intensity-dependent tolerance to exercise after attaining V(O2) max in humans.
    Coats EM; Rossiter HB; Day JR; Miura A; Fukuba Y; Whipp BJ
    J Appl Physiol (1985); 2003 Aug; 95(2):483-90. PubMed ID: 12665540
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of glycogen depletion on the curvature constant parameter of the power-duration curve for cycle ergometry.
    Miura A; Sato H; Sato H; Whipp BJ; Fukuba Y
    Ergonomics; 2000 Jan; 43(1):133-41. PubMed ID: 10661696
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of Prior Upper Body Exercise on the 3-min All-Out Cycling Test in Men.
    Johnson MA; Williams NC; Graham AW; Ingram LAL; Cooper SB; Sharpe GR
    Med Sci Sports Exerc; 2020 Nov; 52(11):2402-2411. PubMed ID: 32366795
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Critical Power in Laboratory and Field Conditions Using Single-visit Maximal Effort Trials.
    Triska C; Tschan H; Tazreiter G; Nimmerichter A
    Int J Sports Med; 2015 Nov; 36(13):1063-8. PubMed ID: 26258826
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of maximal aerobic power and critical power in a single 90-s isokinetic all-out cycling test.
    Brickley G; Dekerle J; Hammond AJ; Pringle J; Carter H
    Int J Sports Med; 2007 May; 28(5):414-9. PubMed ID: 17111310
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modelling of aerobic and anaerobic energy production during exhaustive exercise on a cycle ergometer.
    Chatagnon M; Busso T
    Eur J Appl Physiol; 2006 Aug; 97(6):755-60. PubMed ID: 16786356
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of pacing strategy on work done above critical power during high-intensity exercise.
    Chidnok W; Dimenna FJ; Bailey SJ; Wilkerson DP; Vanhatalo A; Jones AM
    Med Sci Sports Exerc; 2013 Jul; 45(7):1377-85. PubMed ID: 23377832
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of prior heavy exercise on the parameters of the power-duration curve for cycle ergometry.
    Miura A; Shiragiku C; Hirotoshi Y; Kitano A; Endo MY; Barstow TJ; Morton RH; Fukuba Y
    Appl Physiol Nutr Metab; 2009 Dec; 34(6):1001-7. PubMed ID: 20029507
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Time Trials Versus Time-to-Exhaustion Tests: Effects on Critical Power, W', and Oxygen-Uptake Kinetics.
    Karsten B; Baker J; Naclerio F; Klose A; Bianco A; Nimmerichter A
    Int J Sports Physiol Perform; 2018 Feb; 13(2):183-188. PubMed ID: 28530476
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differences among estimates of critical power and anaerobic work capacity derived from five mathematical models and the three-minute all-out test.
    Bergstrom HC; Housh TJ; Zuniga JM; Traylor DA; Lewis RW; Camic CL; Schmidt RJ; Johnson GO
    J Strength Cond Res; 2014 Mar; 28(3):592-600. PubMed ID: 24566607
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The critical power function is dependent on the duration of the predictive exercise tests chosen.
    Bishop D; Jenkins DG; Howard A
    Int J Sports Med; 1998 Feb; 19(2):125-9. PubMed ID: 9562222
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A 3-parameter critical power model.
    Morton RH
    Ergonomics; 1996 Apr; 39(4):611-9. PubMed ID: 8854981
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relationship between the curvature constant parameter of the power-duration curve and muscle cross-sectional area of the thigh for cycle ergometry in humans.
    Miura A; Endo M; Sato H; Sato H; Barstow TJ; Fukuba Y
    Eur J Appl Physiol; 2002 Jul; 87(3):238-44. PubMed ID: 12111284
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of initial metabolic rate on the power-duration relationship for all-out exercise.
    Parker Simpson L; Jones AM; Vanhatalo A; Wilkerson DP
    Eur J Appl Physiol; 2012 Jul; 112(7):2467-73. PubMed ID: 22052102
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of work and recovery durations on W' reconstitution during intermittent exercise.
    Skiba PF; Jackman S; Clarke D; Vanhatalo A; Jones AM
    Med Sci Sports Exerc; 2014 Jul; 46(7):1433-40. PubMed ID: 24492634
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Responses during exhaustive exercise at critical power determined from the 3-min all-out test.
    Bergstrom HC; Housh TJ; Zuniga JM; Traylor DA; Lewis RW; Camic CL; Schmidt RJ; Johnson GO
    J Sports Sci; 2013; 31(5):537-45. PubMed ID: 23121405
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An evaluation of the maximal anaerobic capacity in man.
    Camus G; Thys H
    Int J Sports Med; 1991 Aug; 12(4):349-55. PubMed ID: 1917217
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The constant work rate critical power protocol overestimates ramp incremental exercise performance.
    Black MI; Jones AM; Kelly JA; Bailey SJ; Vanhatalo A
    Eur J Appl Physiol; 2016 Dec; 116(11-12):2415-2422. PubMed ID: 27787608
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.