These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 30694478)
1. Preparation of a Spaceflight Experiment to Study Tropisms in Arabidopsis Seedlings on the International Space Station. Vandenbrink JP; Kiss JZ Methods Mol Biol; 2019; 1924():207-214. PubMed ID: 30694478 [TBL] [Abstract][Full Text] [Related]
2. Phototropism of Arabidopsis thaliana in microgravity and fractional gravity on the International Space Station. Kiss JZ; Millar KD; Edelmann RE Planta; 2012 Aug; 236(2):635-45. PubMed ID: 22481136 [TBL] [Abstract][Full Text] [Related]
3. A novel phototropic response to red light is revealed in microgravity. Millar KD; Kumar P; Correll MJ; Mullen JL; Hangarter RP; Edelmann RE; Kiss JZ New Phytol; 2010 May; 186(3):648-56. PubMed ID: 20298479 [TBL] [Abstract][Full Text] [Related]
4. RNA-seq analyses of Arabidopsis thaliana seedlings after exposure to blue-light phototropic stimuli in microgravity. Vandenbrink JP; Herranz R; Poehlman WL; Alex Feltus F; Villacampa A; Ciska M; Javier Medina F; Kiss JZ Am J Bot; 2019 Nov; 106(11):1466-1476. PubMed ID: 31709515 [TBL] [Abstract][Full Text] [Related]
5. The combined effects of real or simulated microgravity and red-light photoactivation on plant root meristematic cells. Valbuena MA; Manzano A; Vandenbrink JP; Pereda-Loth V; Carnero-Diaz E; Edelmann RE; Kiss JZ; Herranz R; Medina FJ Planta; 2018 Sep; 248(3):691-704. PubMed ID: 29948124 [TBL] [Abstract][Full Text] [Related]
6. A novel blue-light phototropic response is revealed in roots of Arabidopsis thaliana in microgravity. Vandenbrink JP; Herranz R; Medina FJ; Edelmann RE; Kiss JZ Planta; 2016 Dec; 244(6):1201-1215. PubMed ID: 27507239 [TBL] [Abstract][Full Text] [Related]
7. Plant biology in reduced gravity on the Moon and Mars. Kiss JZ Plant Biol (Stuttg); 2014 Jan; 16 Suppl 1():12-7. PubMed ID: 23889757 [TBL] [Abstract][Full Text] [Related]
8. Exploration of plant growth and development using the European Modular Cultivation System facility on the International Space Station. Kittang AI; Iversen TH; Fossum KR; Mazars C; Carnero-Diaz E; Boucheron-Dubuisson E; Le Disquet I; Legué V; Herranz R; Pereda-Loth V; Medina FJ Plant Biol (Stuttg); 2014 May; 16(3):528-38. PubMed ID: 24433330 [TBL] [Abstract][Full Text] [Related]
9. A novel device to study altered gravity and light interactions in seedling tropisms. Aronne G; Muthert LWF; Izzo LG; Romano LE; Iovane M; Capozzi F; Manzano A; Ciska M; Herranz R; Medina FJ; Kiss JZ; van Loon JJWA Life Sci Space Res (Amst); 2022 Feb; 32():8-16. PubMed ID: 35065766 [TBL] [Abstract][Full Text] [Related]
10. Morphometric analyses of petioles of seedlings grown in a spaceflight experiment. Johnson CM; Subramanian A; Edelmann RE; Kiss JZ J Plant Res; 2015 Nov; 128(6):1007-16. PubMed ID: 26376793 [TBL] [Abstract][Full Text] [Related]
11. Spaceflight studies identify a gene encoding an intermediate filament involved in tropism pathways. Shymanovich T; Vandenbrink JP; Herranz R; Medina FJ; Kiss JZ Plant Physiol Biochem; 2022 Jan; 171():191-200. PubMed ID: 35007950 [TBL] [Abstract][Full Text] [Related]
12. The development of spaceflight experiments with Arabidopsis as a model system in gravitropism studies. Katembe WJ; Edelmann RE; Brinckmann E; Kiss JZ J Plant Res; 1998 Sep; 111(1103):463-70. PubMed ID: 11541551 [TBL] [Abstract][Full Text] [Related]
13. Gravitropism and development of wild-type and starch-deficient mutants of Arabidopsis during spaceflight. Kiss JZ; Katembe WJ; Edelmann RE Physiol Plant; 1998 Apr; 102(4):493-502. PubMed ID: 11541086 [TBL] [Abstract][Full Text] [Related]
14. Spaceflight experiments with Arabidopsis starch-deficient mutants support a statolith-based model for graviperception. Kiss JZ; Edelmann RE Adv Space Res; 1999; 24(6):755-62. PubMed ID: 11542619 [TBL] [Abstract][Full Text] [Related]
15. Transcriptome analyses of Arabidopsis thaliana seedlings grown in space: implications for gravity-responsive genes. Correll MJ; Pyle TP; Millar KD; Sun Y; Yao J; Edelmann RE; Kiss JZ Planta; 2013 Sep; 238(3):519-33. PubMed ID: 23771594 [TBL] [Abstract][Full Text] [Related]
16. Plant tropisms: from Darwin to the International Space Station. Wyatt SE; Kiss JZ Am J Bot; 2013 Jan; 100(1):1-3. PubMed ID: 23281390 [TBL] [Abstract][Full Text] [Related]
17. Ultradian rhythms in Arabidopsis thaliana leaves in microgravity. Solheim BGB; Johnsson A; Iversen TH New Phytol; 2009; 183(4):1043-1052. PubMed ID: 19538548 [TBL] [Abstract][Full Text] [Related]
18. Functional Meta-Analysis of the Proteomic Responses of Arabidopsis Seedlings to the Spaceflight Environment Reveals Multi-Dimensional Sources of Variability across Spaceflight Experiments. Olanrewaju GO; Kruse CPS; Wyatt SE Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37833871 [TBL] [Abstract][Full Text] [Related]
19. Gravity-dependent differentiation and root coils in Arabidopsis thaliana wild type and phospholipase-A-I knockdown mutant grown on the International Space Station. Scherer GF; Pietrzyk P Plant Biol (Stuttg); 2014 Jan; 16 Suppl 1():97-106. PubMed ID: 24373011 [TBL] [Abstract][Full Text] [Related]
20. Microsome-associated proteome modifications of Arabidopsis seedlings grown on board the International Space Station reveal the possible effect on plants of space stresses other than microgravity. Mazars C; Brière C; Grat S; Pichereaux C; Rossignol M; Pereda-Loth V; Eche B; Boucheron-Dubuisson E; Le Disquet I; Medina FJ; Graziana A; Carnero-Diaz E Plant Signal Behav; 2014; 9(9):e29637. PubMed ID: 25763699 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]