BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 30694509)

  • 1. Subcellular Protein Fractionation in Legionella pneumophila and Preparation of the Derived Sub-proteomes for Analysis by Mass Spectrometry.
    Maaß S; Moog G; Becher D
    Methods Mol Biol; 2019; 1921():445-464. PubMed ID: 30694509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Life Stage-specific Proteomes of Legionella pneumophila Reveal a Highly Differential Abundance of Virulence-associated Dot/Icm effectors.
    Aurass P; Gerlach T; Becher D; Voigt B; Karste S; Bernhardt J; Riedel K; Hecker M; Flieger A
    Mol Cell Proteomics; 2016 Jan; 15(1):177-200. PubMed ID: 26545400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Profiling Cell Lines Nuclear Sub-proteome.
    Poersch A; Maria AG; Palma CS; Grassi ML; Albuquerque D; Thomé CH; Faça VM
    Methods Mol Biol; 2017; 1550():35-46. PubMed ID: 28188521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic regulation during Legionella pneumophila biofilm development: decrease of virulence factors and enhancement of response to oxidative stress.
    Khemiri A; Lecheheb SA; Chi Song PC; Jouenne T; Cosette P
    J Water Health; 2014 Jun; 12(2):242-53. PubMed ID: 24937218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving Proteome Coverage for Small Sample Amounts: An Advanced Method for Proteomics Approaches with Low Bacterial Cell Numbers.
    Blankenburg S; Hentschker C; Nagel A; Hildebrandt P; Michalik S; Dittmar D; Surmann K; Völker U
    Proteomics; 2019 Dec; 19(23):e1900192. PubMed ID: 31532911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. VBNC Legionella pneumophila cells are still able to produce virulence proteins.
    Alleron L; Khemiri A; Koubar M; Lacombe C; Coquet L; Cosette P; Jouenne T; Frere J
    Water Res; 2013 Nov; 47(17):6606-17. PubMed ID: 24064547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential Proteome Between Patient-Related and Non-related Environmental Isolates of Legionella pneumophila.
    Quero S; García-Núñez M; Párraga-Niño N; Pedro-Botet ML; Mateu L; Sabrià M
    Curr Microbiol; 2017 Mar; 74(3):344-355. PubMed ID: 28138785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Proteomic Analysis of the Human Nucleolus.
    Bensaddek D; Nicolas A; Lamond AI
    Methods Mol Biol; 2016; 1455():249-62. PubMed ID: 27576725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dot/Icm Effector Translocation by Legionella longbeachae Creates a Replicative Vacuole Similar to That of Legionella pneumophila despite Translocation of Distinct Effector Repertoires.
    Wood RE; Newton P; Latomanski EA; Newton HJ
    Infect Immun; 2015 Oct; 83(10):4081-92. PubMed ID: 26216429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virulence strategies for infecting phagocytes deduced from the in vivo transcriptional program of Legionella pneumophila.
    Brüggemann H; Hagman A; Jules M; Sismeiro O; Dillies MA; Gouyette C; Kunst F; Steinert M; Heuner K; Coppée JY; Buchrieser C
    Cell Microbiol; 2006 Aug; 8(8):1228-40. PubMed ID: 16882028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional analysis of novel Rab GTPases identified in the proteome of purified Legionella-containing vacuoles from macrophages.
    Hoffmann C; Finsel I; Otto A; Pfaffinger G; Rothmeier E; Hecker M; Becher D; Hilbi H
    Cell Microbiol; 2014 Jul; 16(7):1034-52. PubMed ID: 24373249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Type II secretion and Legionella virulence.
    Cianciotto NP
    Curr Top Microbiol Immunol; 2013; 376():81-102. PubMed ID: 23900831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Complete Proteomic Workflow to Study Brain-Related Disorders via Postmortem Tissue.
    Reis-de-Oliveira G; Fioramonte M; Martins-de-Souza D
    Methods Mol Biol; 2019; 1916():319-328. PubMed ID: 30535709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sel1 repeat protein LpnE is a Legionella pneumophila virulence determinant that influences vacuolar trafficking.
    Newton HJ; Sansom FM; Dao J; McAlister AD; Sloan J; Cianciotto NP; Hartland EL
    Infect Immun; 2007 Dec; 75(12):5575-85. PubMed ID: 17893138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Outer-membrane proteomic maps and surface-exposed proteins of Legionella pneumophila using cellular fractionation and fluorescent labelling.
    Khemiri A; Galland A; Vaudry D; Chan Tchi Song P; Vaudry H; Jouenne T; Cosette P
    Anal Bioanal Chem; 2008 Apr; 390(7):1861-71. PubMed ID: 18278588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane Profiling by Free Flow Electrophoresis and SWATH-MS to Characterize Subcellular Compartment Proteomes in
    Guo Q; Liu L; Yim WC; Cushman JC; Barkla BJ
    Int J Mol Sci; 2021 May; 22(9):. PubMed ID: 34065142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathogenicity of Legionella pneumophila.
    Cianciotto NP
    Int J Med Microbiol; 2001 Nov; 291(5):331-43. PubMed ID: 11727817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Legionella pneumophila genome evolved to accommodate multiple regulatory mechanisms controlled by the CsrA-system.
    Sahr T; Rusniok C; Impens F; Oliva G; Sismeiro O; Coppée JY; Buchrieser C
    PLoS Genet; 2017 Feb; 13(2):e1006629. PubMed ID: 28212376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomics technologies for the global identification and quantification of proteins.
    Brewis IA; Brennan P
    Adv Protein Chem Struct Biol; 2010; 80():1-44. PubMed ID: 21109216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sample Preparation Approaches for iTRAQ Labeling and Quantitative Proteomic Analyses in Systems Biology.
    Spanos C; Moore JB
    Methods Mol Biol; 2016; 1394():15-24. PubMed ID: 26700038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.