These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 30694660)

  • 21. Tautomeric Effect of Histidine on the Monomeric Structure of Amyloid β-Peptide(1-42).
    Shi H; Lee JY
    ACS Chem Neurosci; 2017 Mar; 8(3):669-675. PubMed ID: 28292182
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of Electrostatic Interactions in Binding of Peptides and Intrinsically Disordered Proteins to Their Folded Targets: 2. The Model of Encounter Complex Involving the Double Mutant of the c-Crk N-SH3 Domain and Peptide Sos.
    Yuwen T; Xue Y; Skrynnikov NR
    Biochemistry; 2016 Mar; 55(12):1784-800. PubMed ID: 26910732
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of force fields for Alzheimer's A β42: A case study for intrinsically disordered proteins.
    Carballo-Pacheco M; Strodel B
    Protein Sci; 2017 Feb; 26(2):174-185. PubMed ID: 27727496
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insights into the aggregation mechanism of Aβ(25-40).
    Xiong J; JiJi RD
    Biophys Chem; 2017 Jan; 220():42-48. PubMed ID: 27856006
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the role of sidechain size and charge in the aggregation of A
    Yang X; Meisl G; Frohm B; Thulin E; Knowles TPJ; Linse S
    Proc Natl Acad Sci U S A; 2018 Jun; 115(26):E5849-E5858. PubMed ID: 29895690
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetic Modulation of Amyloid-β (1-42) Aggregation and Toxicity by Structure-Based Rational Design.
    Im D; Heo CE; Son MK; Park CR; Kim HI; Choi JM
    J Am Chem Soc; 2022 Feb; 144(4):1603-1611. PubMed ID: 35073692
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cosolvent Effects on the Growth of Protein Aggregates Formed by a Single Domain Globular Protein and an Intrinsically Disordered Protein.
    Mondal B; Reddy G
    J Phys Chem B; 2019 Mar; 123(9):1950-1960. PubMed ID: 30730736
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Current Challenges and Limitations in the Studies of Intrinsically Disordered Proteins in Neurodegenerative Diseases by Computer Simulations.
    Akbayrak IY; Caglayan SI; Ozcan Z; Uversky VN; Coskuner-Weber O
    Curr Alzheimer Res; 2020; 17(9):805-818. PubMed ID: 33167839
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient construction of a diverse conformational library for amyloid-β as an intrinsically disordered protein.
    Salehi N; Amininasab M; Firouzi R; Karimi-Jafari MH
    J Mol Graph Model; 2019 May; 88():183-193. PubMed ID: 30708285
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Divalent copper ion bound amyloid-β(40) and amyloid-β(42) alloforms are less preferred than divalent zinc ion bound amyloid-β(40) and amyloid-β(42) alloforms.
    Coskuner O
    J Biol Inorg Chem; 2016 Dec; 21(8):957-973. PubMed ID: 27659954
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New force field on modeling intrinsically disordered proteins.
    Wang W; Ye W; Jiang C; Luo R; Chen HF
    Chem Biol Drug Des; 2014 Sep; 84(3):253-69. PubMed ID: 24589355
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Amyloid Aggregation of Bacillus circulans Xylanase under Native Conditions and its Modulation by β-Amyloid-Derived Peptide Fragments.
    Charlton T; Shah V; Lynch T; Candreva J; Chau E; Yang Y; Kim H; Wood A; Kim JR
    Chembiochem; 2018 Dec; 19(24):2566-2574. PubMed ID: 30332530
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of Taiwan mutation (D7H) on structures of amyloid-β peptides: replica exchange molecular dynamics study.
    Truong PM; Viet MH; Nguyen PH; Hu CK; Li MS
    J Phys Chem B; 2014 Jul; 118(30):8972-81. PubMed ID: 25010208
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural analysis of oligomeric and protofibrillar Aβ amyloid pair structures considering F20L mutation effects using molecular dynamics simulations.
    Lee M; Chang HJ; Baek I; Na S
    Proteins; 2017 Apr; 85(4):580-592. PubMed ID: 28019690
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Effects of A21G Mutation on Transmembrane Amyloid Beta (11-40) Trimer: An In Silico Study.
    Ngo ST; Nguyen MT; Nguyen NT; Vu VV
    J Phys Chem B; 2017 Sep; 121(36):8467-8474. PubMed ID: 28817283
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Zn(II)- and Cu(II)-induced non-fibrillar aggregates of amyloid-beta (1-42) peptide are transformed to amyloid fibrils, both spontaneously and under the influence of metal chelators.
    Tõugu V; Karafin A; Zovo K; Chung RS; Howells C; West AK; Palumaa P
    J Neurochem; 2009 Sep; 110(6):1784-95. PubMed ID: 19619132
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intrinsic origin of amyloid aggregation: Behavior of histidine (εεε) and (δδδ) tautomer homodimers of Aβ (1-40).
    Salimi A; Li H; Shi H; Lee JY
    Biochim Biophys Acta Gen Subj; 2019 May; 1863(5):795-801. PubMed ID: 30771375
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interactions of a water-soluble fullerene derivative with amyloid-β protofibrils: dynamics, binding mechanism, and the resulting salt-bridge disruption.
    Zhou X; Xi W; Luo Y; Cao S; Wei G
    J Phys Chem B; 2014 Jun; 118(24):6733-41. PubMed ID: 24857343
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploring the aggregation free energy landscape of the amyloid-β protein (1-40).
    Zheng W; Tsai MY; Chen M; Wolynes PG
    Proc Natl Acad Sci U S A; 2016 Oct; 113(42):11835-11840. PubMed ID: 27698130
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of Cu(II) Binding on Structures and Dynamics of Aβ
    Huy PD; Vuong QV; La Penna G; Faller P; Li MS
    ACS Chem Neurosci; 2016 Oct; 7(10):1348-1363. PubMed ID: 27454036
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.