These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 30695338)

  • 21. Distribution of electrotonic synapses on identified lamprey neurons: a comparison of a model prediction with an electron microscopic analysis.
    Christensen BN
    J Neurophysiol; 1983 Mar; 49(3):705-16. PubMed ID: 6834095
    [TBL] [Abstract][Full Text] [Related]  

  • 22. GABA and glycine in synaptic microcircuits associated with physiologically characterized primary afferents of cat trigeminal principal nucleus.
    Bae YC; Park KS; Bae JY; Paik SK; Ahn DK; Moritani M; Yoshida A; Shigenaga Y
    Exp Brain Res; 2005 May; 162(4):449-57. PubMed ID: 15678357
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Central terminations of muscle afferents on motoneurones in the cat spinal cord.
    Iles JF
    J Physiol; 1976 Oct; 262(1):91-117. PubMed ID: 62833
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [The colocalization of neurotransmitters in the presynaptic boutons of inhibitory synapses in the lamprey spinal cord].
    Veselkin NP; Adanina VO; Rio JP; Repérant J
    Ross Fiziol Zh Im I M Sechenova; 1999 Apr; 85(4):515-22. PubMed ID: 10513385
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Light microscopic and ultrastructural analysis of GABA-immunoreactive profiles in the monkey spinal cord.
    Carlton SM; Hayes ES
    J Comp Neurol; 1990 Oct; 300(2):162-82. PubMed ID: 2258461
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The reticulospinal glutamate synapse in lamprey: plasticity and presynaptic variability.
    Brodin L; Shupliakov O; Pieribone VA; Hellgren J; Hill RH
    J Neurophysiol; 1994 Aug; 72(2):592-604. PubMed ID: 7983521
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dendroaxonic synapses in the substantia gelatinosa glomeruli of the spinal trigeminal nucleus of the cat.
    Gobell S
    J Comp Neurol; 1976 May; 167(2):165-76. PubMed ID: 932238
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Quantitative study of the reticular-motor neuronal contacts in the spinal cord of the lampern].
    Batueva IV; Shupliakov OV
    Neirofiziologiia; 1988; 20(6):814-7. PubMed ID: 3074267
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spinothalamic and propriospinal neurones in the upper cervical cord of the rat: terminations of primary afferent fibres on soma and primary dendrites.
    Bolton PS; Tracey DJ
    Exp Brain Res; 1992; 92(1):59-68. PubMed ID: 1486955
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Morphologically heterogeneous met-enkephalin terminals form synapses with tyrosine hydroxylase-containing dendrites in the rat nucleus locus coeruleus.
    Van Bockstaele EJ; Branchereau P; Pickel VM
    J Comp Neurol; 1995 Dec; 363(3):423-38. PubMed ID: 8847409
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [The ultrastructural characteristics of the motor neuron synaptic organization in the spinal cord of the frog Rana ridibunda].
    Motorina MV
    Zh Evol Biokhim Fiziol; 1991; 27(1):49-57. PubMed ID: 1897320
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Ultrastructure of terminals of primary afferents in the ninth segment of the lumbar spinal cord of the tadpole Rana ridibunda].
    Adonina VO; Shupliakov OV
    Zh Evol Biokhim Fiziol; 1987; 23(3):399-401. PubMed ID: 2441545
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flexible processing of sensory information induced by axo-axonic synapses on afferent fibers.
    Lamotte d'Incamps B; Meunier C; Zytnicki D; Jami L
    J Physiol Paris; 1999; 93(4):369-77. PubMed ID: 10574125
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Immunogold quantification of glutamate in two types of excitatory synapse with different firing patterns.
    Shupliakov O; Brodin L; Cullheim S; Ottersen OP; Storm-Mathisen J
    J Neurosci; 1992 Oct; 12(10):3789-803. PubMed ID: 1357115
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Axon and dendrite geography predict the specificity of synaptic connections in a functioning spinal cord network.
    Li WC; Cooke T; Sautois B; Soffe SR; Borisyuk R; Roberts A
    Neural Dev; 2007 Sep; 2():17. PubMed ID: 17845723
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Marginal neurons of the spinal cord: types, afferent synaptology and functional considerations.
    Narotzky RA; Kerr FW
    Brain Res; 1978 Jan; 139(1):1-20. PubMed ID: 620344
    [No Abstract]   [Full Text] [Related]  

  • 37. Synaptic and nonsynaptic monoaminergic neuron systems in the lamprey spinal cord.
    Schotland JL; Shupliakov O; Grillner S; Brodin L
    J Comp Neurol; 1996 Aug; 372(2):229-44. PubMed ID: 8863128
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Electrotonic excitatory postsynaptic potentials evoked by stimulation of ventral roots in motoneurons and Muller axons of Lampetra fluviatilis lampreys].
    Tamarova ZA
    Zh Evol Biokhim Fiziol; 1978; 14(6):581-8. PubMed ID: 735599
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Connexions between hair follicle afferent fibres and spinocervical tract neurones in the cat: the synthesis of receptive fields.
    Brown AG; Noble R
    J Physiol; 1982 Feb; 323():77-91. PubMed ID: 7097589
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Specificity of identified central synapses in the embryonic cockroach: appropriate connections form before the onset of spontaneous afferent activity.
    Blagburn JM; Sosa MA; Blanco RE
    J Comp Neurol; 1996 Sep; 373(4):511-28. PubMed ID: 8889942
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.