These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 30695638)

  • 21. Gas-phase conversion of tetrazoles to oxadiazoles: isolation and characterization of the N-acylated intermediate.
    Seldes AM; D'Accorso N; Souto MF; Alho MM; Arabehety CG
    J Mass Spectrom; 2001 Sep; 36(9):1069-73. PubMed ID: 11599085
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of amino-1,2,4-triazoles by reductive ANRORC rearrangements of 1,2,4-oxadiazoles.
    Palumbo Piccionello A; Guarcello A; Buscemi S; Vivona N; Pace A
    J Org Chem; 2010 Dec; 75(24):8724-7. PubMed ID: 21080723
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tandem reactions of 1,2,4-oxadiazoles with allylamines.
    Palumbo Piccionello A; Pace A; Buscemi S
    Org Lett; 2011 Sep; 13(17):4749-51. PubMed ID: 21827137
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stereoselective Synthesis, Synthetic and Pharmacological Application of Monoterpene-Based 1,2,4- and 1,3,4-Oxadiazoles.
    Gonda T; Bérdi P; Zupkó I; Fülöp F; Szakonyi Z
    Int J Mol Sci; 2017 Dec; 19(1):. PubMed ID: 29283373
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Model study of the photochemical rearrangement pathways of 1,2,4-oxadiazole.
    Su MD
    Chemphyschem; 2014 Sep; 15(13):2712-22. PubMed ID: 25044693
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Examining Ionic Liquid Effects on Mononuclear Rearrangement of Heterocycles Using QM/MM Simulations.
    Allen C; Ghebreab R; Doherty B; Li B; Acevedo O
    J Phys Chem B; 2016 Oct; 120(41):10786-10796. PubMed ID: 27690447
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electron-withdrawing substituents decrease the electrophilicity of the carbonyl carbon. An investigation with the aid of (13)C NMR chemical shifts, nu(C[double bond]O) frequency values, charge densities, and isodesmic reactions to interpret substituent effects on reactivity.
    Neuvonen H; Neuvonen K; Koch A; Kleinpeter E; Pasanen P
    J Org Chem; 2002 Oct; 67(20):6995-7003. PubMed ID: 12353992
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cyclization and rearrangement reactions of a(n) fragment ions of protonated peptides.
    Bythell BJ; Maître P; Paizs B
    J Am Chem Soc; 2010 Oct; 132(42):14766-79. PubMed ID: 20925356
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ab initio study of the substituent effects on the relative stability of the E and Z conformers of phenyl esters. Stereoelectronic effects on the reactivity of the carbonyl group.
    Neuvonen H; Neuvonen K; Koch A; Kleinpeter E
    J Phys Chem A; 2005 Jul; 109(28):6279-89. PubMed ID: 16833969
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reduction of Benzonitriles via Osmium-Azavinylidene Intermediates Bearing Nucleophilic and Electrophilic Centers.
    Babón JC; Esteruelas MA; Fernández I; López AM; Oñate E
    Inorg Chem; 2019 Jul; 58(13):8673-8684. PubMed ID: 31247858
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel aryl and heteroaryl substituted N-[3-(4-phenylpiperazin-1-yl)propyl]-1,2,4-oxadiazole-5-carboxamides as selective GSK-3 inhibitors.
    Koryakova AG; Ivanenkov YA; Ryzhova EA; Bulanova EA; Karapetian RN; Mikitas OV; Katrukha EA; Kazey VI; Okun I; Kravchenko DV; Lavrovsky YV; Korzinov OM; Ivachtchenko AV
    Bioorg Med Chem Lett; 2008 Jun; 18(12):3661-6. PubMed ID: 18502121
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metal complexes containing allenylidene and higher cumulenylidene ligands: a theoretical perspective.
    Coletti C; Marrone A; Re N
    Acc Chem Res; 2012 Feb; 45(2):139-49. PubMed ID: 21899273
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oxadiazole-substituted naphtho[2,3-b]thiophene-4,9-diones as potent inhibitors of keratinocyte hyperproliferation. Structure-activity relationships of the tricyclic quinone skeleton and the oxadiazole substituent.
    Basoglu A; Dirkmann S; Zahedi Golpayegani N; Vortherms S; Tentrop J; Nowottnik D; Prinz H; Fröhlich R; Müller K
    Eur J Med Chem; 2017 Jul; 134():119-132. PubMed ID: 28410493
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient approach to androstene-fused arylpyrazolines as potent antiproliferative agents. Experimental and theoretical studies of substituent effects on BF(3)-catalyzed intramolecular [3 + 2] cycloadditions of olefinic phenylhydrazones.
    Frank E; Mucsi Z; Zupkó I; Réthy B; Falkay G; Schneider G; Wölfling J
    J Am Chem Soc; 2009 Mar; 131(11):3894-904. PubMed ID: 19245200
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling H-bonding and solvent effects in the alkylation of pyrimidine bases by a prototype quinone methide: a DFT study.
    Freccero M; Di Valentin C; Sarzi-Amadè M;
    J Am Chem Soc; 2003 Mar; 125(12):3544-53. PubMed ID: 12643716
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isostructural dinuclear phenoxo-/acetato-bridged manganese(II), cobalt(II), and zinc(II) complexes with labile sites: kinetics of transesterification of 2-hydroxypropyl-p-nitrophenylphosphate.
    Arora H; Barman SK; Lloret F; Mukherjee R
    Inorg Chem; 2012 May; 51(10):5539-53. PubMed ID: 22536852
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The reaction of carbonyl cyanide phenylhydrazones with thiols.
    Drobnica L; Sturdík E
    Biochim Biophys Acta; 1979 Jul; 585(3):462-76. PubMed ID: 39629
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insights into catalytic oxidation at the Au/TiO(2) dual perimeter sites.
    Green IX; Tang W; Neurock M; Yates JT
    Acc Chem Res; 2014 Mar; 47(3):805-15. PubMed ID: 24372536
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coordination-directed one-dimensional coordination polymers generated from a new oxadiazole bridging ligand and HgX2 (X=Cl, Br and I).
    Yang R; Ma JP; Huang RQ; Dong YB
    Acta Crystallogr C; 2011 Jun; 67(Pt 6):m176-80. PubMed ID: 21633149
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Catalysis of the ethanolysis of aryl methyl phenyl phosphinate esters by alkali metal ions: transition state structures for uncatalyzed and metal ion-catalyzed reactions.
    Onyido I; Albright K; Buncel E
    Org Biomol Chem; 2005 Apr; 3(8):1468-75. PubMed ID: 15827643
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.