These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Polymerization of glycidyl methacrylate from the surface of cellulose nanocrystals for the elaboration of PLA-based nanocomposites. Le Gars M; Bras J; Salmi-Mani H; Ji M; Dragoe D; Faraj H; Domenek S; Belgacem N; Roger P Carbohydr Polym; 2020 Apr; 234():115899. PubMed ID: 32070519 [TBL] [Abstract][Full Text] [Related]
5. Nanoreinforced bacterial cellulose-montmorillonite composites for biomedical applications. Ul-Islam M; Khan T; Park JK Carbohydr Polym; 2012 Aug; 89(4):1189-97. PubMed ID: 24750931 [TBL] [Abstract][Full Text] [Related]
6. Poly(glycidyl methacrylate) modified cellulose nanocrystals and their PBAT-based nanocomposites. Arslan ON; Güntürkün D; Göksu YA; Altınbay A; Özer HÖ; Nofar M Int J Biol Macromol; 2023 Dec; 253(Pt 3):126851. PubMed ID: 37709232 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of bacterial cellulose/hyaluronan nanocomposite biomaterials. Li Y; Qing S; Zhou J; Yang G Carbohydr Polym; 2014 Mar; 103():496-501. PubMed ID: 24528759 [TBL] [Abstract][Full Text] [Related]
9. In situ synthesis of bacterial cellulose/polycaprolactone blends for hot pressing nanocomposite films production. Figueiredo AR; Silvestre AJ; Pascoal Neto C; Freire CS Carbohydr Polym; 2015 Nov; 132():400-8. PubMed ID: 26256364 [TBL] [Abstract][Full Text] [Related]
10. Surface-initiated atom transfer radical polymerization grafting from nanoporous cellulose gels to create hydrophobic nanocomposites. Cheng D; Wei P; Zhang L; Cai J RSC Adv; 2018 Jul; 8(48):27045-27053. PubMed ID: 35539974 [TBL] [Abstract][Full Text] [Related]
11. Synthesis and Characterization of Novel Azole Functionalized Poly(glycidyl methacrylate)s for Antibacterial and Anticandidal Activity. Rehman S; Gunday ST; Alsalem ZH; Bozkurt A Curr Org Synth; 2019; 16(7):1002-1009. PubMed ID: 31984881 [TBL] [Abstract][Full Text] [Related]
12. Physicochemical surface properties of bacterial cellulose/polymethacrylate nanocomposites: an approach by inverse gas chromatography. Faria M; Vilela C; Silvestre AJD; Deepa B; Resnik M; Freire CSR; Cordeiro N Carbohydr Polym; 2019 Feb; 206():86-93. PubMed ID: 30553394 [TBL] [Abstract][Full Text] [Related]
13. Bacterial cellulose nanocomposites: An all-nano type of material. Torres FG; Arroyo JJ; Troncoso OP Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1277-1293. PubMed ID: 30813008 [TBL] [Abstract][Full Text] [Related]
14. Bacterial cellulose composites loaded with SiO Sheykhnazari S; Tabarsa T; Ashori A; Ghanbari A Int J Biol Macromol; 2016 Dec; 93(Pt A):672-677. PubMed ID: 27637448 [TBL] [Abstract][Full Text] [Related]
15. Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(L-lactide-co-caprolactone) Nanocomposites. Li K; Huang J; Gao H; Zhong Y; Cao X; Chen Y; Zhang L; Cai J Biomacromolecules; 2016 Apr; 17(4):1506-15. PubMed ID: 26955741 [TBL] [Abstract][Full Text] [Related]