These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 30695728)

  • 1. Poly(glycidyl methacrylate)/bacterial cellulose nanocomposites: Preparation, characterization and post-modification.
    Faria M; Vilela C; Mohammadkazemi F; Silvestre AJD; Freire CSR; Cordeiro N
    Int J Biol Macromol; 2019 Apr; 127():618-627. PubMed ID: 30695728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocompatible bacterial cellulose-poly(2-hydroxyethyl methacrylate) nanocomposite films.
    Figueiredo AG; Figueiredo AR; Alonso-Varona A; Fernandes SC; Palomares T; Rubio-Azpeitia E; Barros-Timmons A; Silvestre AJ; Pascoal Neto C; Freire CS
    Biomed Res Int; 2013; 2013():698141. PubMed ID: 24093101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid and biocompatible cellulose/polyurethane nanocomposites with water-activated shape memory properties.
    Urbina L; Alonso-Varona A; Saralegi A; Palomares T; Eceiza A; Corcuera MÁ; Retegi A
    Carbohydr Polym; 2019 Jul; 216():86-96. PubMed ID: 31047085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymerization of glycidyl methacrylate from the surface of cellulose nanocrystals for the elaboration of PLA-based nanocomposites.
    Le Gars M; Bras J; Salmi-Mani H; Ji M; Dragoe D; Faraj H; Domenek S; Belgacem N; Roger P
    Carbohydr Polym; 2020 Apr; 234():115899. PubMed ID: 32070519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoreinforced bacterial cellulose-montmorillonite composites for biomedical applications.
    Ul-Islam M; Khan T; Park JK
    Carbohydr Polym; 2012 Aug; 89(4):1189-97. PubMed ID: 24750931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(glycidyl methacrylate) modified cellulose nanocrystals and their PBAT-based nanocomposites.
    Arslan ON; Güntürkün D; Göksu YA; Altınbay A; Özer HÖ; Nofar M
    Int J Biol Macromol; 2023 Dec; 253(Pt 3):126851. PubMed ID: 37709232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of bacterial cellulose/hyaluronan nanocomposite biomaterials.
    Li Y; Qing S; Zhou J; Yang G
    Carbohydr Polym; 2014 Mar; 103():496-501. PubMed ID: 24528759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimicrobial bacterial cellulose nanocomposites prepared by in situ polymerization of 2-aminoethyl methacrylate.
    Figueiredo AR; Figueiredo AG; Silva NH; Barros-Timmons A; Almeida A; Silvestre AJ; Freire CS
    Carbohydr Polym; 2015 Jun; 123():443-53. PubMed ID: 25843878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ synthesis of bacterial cellulose/polycaprolactone blends for hot pressing nanocomposite films production.
    Figueiredo AR; Silvestre AJ; Pascoal Neto C; Freire CS
    Carbohydr Polym; 2015 Nov; 132():400-8. PubMed ID: 26256364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-initiated atom transfer radical polymerization grafting from nanoporous cellulose gels to create hydrophobic nanocomposites.
    Cheng D; Wei P; Zhang L; Cai J
    RSC Adv; 2018 Jul; 8(48):27045-27053. PubMed ID: 35539974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and Characterization of Novel Azole Functionalized Poly(glycidyl methacrylate)s for Antibacterial and Anticandidal Activity.
    Rehman S; Gunday ST; Alsalem ZH; Bozkurt A
    Curr Org Synth; 2019; 16(7):1002-1009. PubMed ID: 31984881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physicochemical surface properties of bacterial cellulose/polymethacrylate nanocomposites: an approach by inverse gas chromatography.
    Faria M; Vilela C; Silvestre AJD; Deepa B; Resnik M; Freire CSR; Cordeiro N
    Carbohydr Polym; 2019 Feb; 206():86-93. PubMed ID: 30553394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial cellulose nanocomposites: An all-nano type of material.
    Torres FG; Arroyo JJ; Troncoso OP
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1277-1293. PubMed ID: 30813008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial cellulose composites loaded with SiO
    Sheykhnazari S; Tabarsa T; Ashori A; Ghanbari A
    Int J Biol Macromol; 2016 Dec; 93(Pt A):672-677. PubMed ID: 27637448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(L-lactide-co-caprolactone) Nanocomposites.
    Li K; Huang J; Gao H; Zhong Y; Cao X; Chen Y; Zhang L; Cai J
    Biomacromolecules; 2016 Apr; 17(4):1506-15. PubMed ID: 26955741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioengineering bacterial cellulose/poly(ethylene oxide) nanocomposites.
    Brown EE; Laborie MP
    Biomacromolecules; 2007 Oct; 8(10):3074-81. PubMed ID: 17764151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of food/oral-simulating liquids on dynamic mechanical thermal properties of dental nanohybrid light-cured resin composites.
    Vouvoudi EC; Sideridou ID
    Dent Mater; 2013 Aug; 29(8):842-50. PubMed ID: 23735751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Room temperature, aqueous post-polymerization modification of glycidyl methacrylate-containing polymer brushes prepared via surface-initiated atom transfer radical polymerization.
    Barbey R; Klok HA
    Langmuir; 2010 Dec; 26(23):18219-30. PubMed ID: 21062007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of monodisperse porous silica particles using poly(glycidyl methacrylate) microspheres as a template.
    Grama S; Horák D
    Physiol Res; 2015; 64(Suppl 1):S11-7. PubMed ID: 26447591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SEM and TEM for structure and properties characterization of bacterial cellulose/hydroxyapatite composites.
    Arkharova NA; Suvorova EI; Severin AV; Khripunov AK; Krasheninnikov SV; Klechkovskaya VV
    Scanning; 2016 Nov; 38(6):757-765. PubMed ID: 27171920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.