These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 30696056)

  • 61. Time Series Forecasting Energy-efficient Organization of Wireless Sensor Networks.
    Wang X; Ma JJ; Wang S; Bi DW
    Sensors (Basel); 2007 Sep; 7(9):1766-1792. PubMed ID: 28903197
    [TBL] [Abstract][Full Text] [Related]  

  • 62. M3BA: A Mobile, Modular, Multimodal Biosignal Acquisition Architecture for Miniaturized EEG-NIRS-Based Hybrid BCI and Monitoring.
    von Luhmann A; Wabnitz H; Sander T; Muller KR
    IEEE Trans Biomed Eng; 2017 Jun; 64(6):1199-1210. PubMed ID: 28113241
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A wireless soil moisture sensor powered by solar energy.
    Jiang M; Lv M; Deng Z; Zhai G
    PLoS One; 2017; 12(9):e0184125. PubMed ID: 28886067
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Design and Implementation of a Wireless Sensor and Actuator Network to Support the Intelligent Control of Efficient Energy Usage.
    Blanco J; García A; Morenas JL
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29890737
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Energy Efficient Moving Target Tracking in Wireless Sensor Networks.
    Wen Y; Gao R; Zhao H
    Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26729129
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Leveraging Energy Harvesting and Wake-Up Receivers for Long-Term Wireless Sensor Networks.
    Ait Aoudia F; Gautier M; Magno M; Berder O; Benini L
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29762535
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A Decentralized Wireless Solution to Monitor and Diagnose PV Solar Module Performance Based on Symmetrized-Shifted Gompertz Functions.
    Molina-García A; Campelo JC; Blanc S; Serrano JJ; García-Sánchez T; Bueso MC
    Sensors (Basel); 2015 Jul; 15(8):18459-79. PubMed ID: 26230694
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Self-Powered Wireless Smart Sensor Node Enabled by an Ultrastable, Highly Efficient, and Superhydrophobic-Surface-Based Triboelectric Nanogenerator.
    Zhao K; Wang ZL; Yang Y
    ACS Nano; 2016 Sep; 10(9):9044-52. PubMed ID: 27599314
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Integration of a Mobile Node into a Hybrid Wireless Sensor Network for Urban Environments.
    Socarrás Bertiz CA; Fernández Lozano JJ; Gomez-Ruiz JA; García-Cerezo A
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626151
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Wireless implantable electronic platform for chronic fluorescent-based biosensors.
    Valdastri P; Susilo E; Förster T; Strohhöfer C; Menciassi A; Dario P
    IEEE Trans Biomed Eng; 2011 Jun; 58(6):1846-54. PubMed ID: 21385666
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Microtremor Recording Surveys to Study the Effects of Seasonally Frozen Soil on Site Response.
    Chen S; Lei J; Li Y
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420739
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Increasing the Lifetime of Mobile WSNs via Dynamic Optimization of Sensor Node Communication Activity.
    Guimarães DA; Sakai LJ; Alberti AM; de Souza RA
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27657075
    [TBL] [Abstract][Full Text] [Related]  

  • 73. [Low-power Wireless Micro Ambulatory Electrocardiogram Node].
    Cai Z; Luo K; Li J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Feb; 33(1):8-13. PubMed ID: 27382732
    [TBL] [Abstract][Full Text] [Related]  

  • 74. On integrating groundwater transport models with wireless sensor networks.
    Barnhart K; Urteaga I; Han Q; Jayasumana A; Illangasekare T
    Ground Water; 2010; 48(5):771-80. PubMed ID: 20199589
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Mitigating Wireless Channel Impairments in Seismic Data Transmission Using Deep Neural Networks.
    Iqbal N; Lawal A; Zerguine A
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577311
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Raspberry Pi Platform Wireless Sensor Node for Low-Frequency Impedance Responses of PZT Interface.
    Pham QQ; Ta QB; Park JH; Kim JT
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36559959
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Lateral vibration data of an 18-story timber-concrete hybrid building obtained by on-site vibration tests.
    Miyazu Y; Loss C
    Data Brief; 2023 Oct; 50():109501. PubMed ID: 37663779
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Low-Power Wireless Sensor Module for Machine Learning-Based Continuous Monitoring of Nuclear Power Plants.
    Lee JC; Choi YR; Yeo D; Moon S
    Sensors (Basel); 2024 Jun; 24(13):. PubMed ID: 39000987
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Development of a Wireless Mesh Sensing System with High-Sensitivity LiNbO₃ Vibration Sensors for Robotic Arm Monitoring.
    Du YC; Lin DTW; Jen CP; Ng CW; Chang CY; Wen YX
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30691134
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Spatiotemporal characteristics of ground microtremor in advance of rockfalls.
    Yang YR; Lee TT; Wang TT
    Sci Rep; 2022 May; 12(1):7751. PubMed ID: 35545635
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.