These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

830 related articles for article (PubMed ID: 30696105)

  • 1. Optimizing the Predictive Ability of Machine Learning Methods for Landslide Susceptibility Mapping Using SMOTE for Lishui City in Zhejiang Province, China.
    Wang Y; Wu X; Chen Z; Ren F; Feng L; Du Q
    Int J Environ Res Public Health; 2019 Jan; 16(3):. PubMed ID: 30696105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of Random Forest Model and Frequency Ratio Model for Landslide Susceptibility Mapping (LSM) in Yunyang County (Chongqing, China).
    Wang Y; Sun D; Wen H; Zhang H; Zhang F
    Int J Environ Res Public Health; 2020 Jun; 17(12):. PubMed ID: 32545618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mine landslide susceptibility assessment using IVM, ANN and SVM models considering the contribution of affecting factors.
    Luo X; Lin F; Zhu S; Yu M; Zhang Z; Meng L; Peng J
    PLoS One; 2019; 14(4):e0215134. PubMed ID: 30973936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GIS-based landslide susceptibility mapping in the Longmen Mountain area (China) using three different machine learning algorithms and their comparison.
    Huang Z; Peng L; Li S; Liu Y; Zhou S
    Environ Sci Pollut Res Int; 2023 Aug; 30(38):88612-88626. PubMed ID: 37440134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zonation of Landslide Susceptibility in Ruijin, Jiangxi, China.
    Zhou X; Wu W; Lin Z; Zhang G; Chen R; Song Y; Wang Z; Lang T; Qin Y; Ou P; Huangfu W; Zhang Y; Xie L; Huang X; Fu X; Li J; Jiang J; Zhang M; Liu Y; Peng S; Shao C; Bai Y; Zhang X; Liu X; Liu W
    Int J Environ Res Public Health; 2021 May; 18(11):. PubMed ID: 34072874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated Landslide-Risk Prediction Using Web GIS and Machine Learning Models.
    Tengtrairat N; Woo WL; Parathai P; Aryupong C; Jitsangiam P; Rinchumphu D
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel evolutionary combination of artificial intelligence algorithm and machine learning for landslide susceptibility mapping in the west of Iran.
    Shen Y; Ahmadi Dehrashid A; Bahar RA; Moayedi H; Nasrollahizadeh B
    Environ Sci Pollut Res Int; 2023 Dec; 30(59):123527-123555. PubMed ID: 37987977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic landslide susceptibility mapping based on the PS-InSAR deformation intensity.
    Jin B; Zeng T; Yin K; Gui L; Guo Z; Wang T
    Environ Sci Pollut Res Int; 2024 Jan; 31(5):7872-7888. PubMed ID: 38170358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Robust Deep-Learning Model for Landslide Susceptibility Mapping: A Case Study of Kurdistan Province, Iran.
    Ghasemian B; Shahabi H; Shirzadi A; Al-Ansari N; Jaafari A; Kress VR; Geertsema M; Renoud S; Ahmad A
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China.
    Chen W; Peng J; Hong H; Shahabi H; Pradhan B; Liu J; Zhu AX; Pei X; Duan Z
    Sci Total Environ; 2018 Jun; 626():1121-1135. PubMed ID: 29898519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined SBAS-InSAR and PSO-RF Algorithm for Evaluating the Susceptibility Prediction of Landslide in Complex Mountainous Area: A Case Study of Ludian County, China.
    Xiao B; Zhao J; Li D; Zhao Z; Zhou D; Xi W; Li Y
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms.
    Nhu VH; Shirzadi A; Shahabi H; Singh SK; Al-Ansari N; Clague JJ; Jaafari A; Chen W; Miraki S; Dou J; Luu C; Górski K; Thai Pham B; Nguyen HD; Ahmad BB
    Int J Environ Res Public Health; 2020 Apr; 17(8):. PubMed ID: 32316191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Convolutional neural network (CNN) with metaheuristic optimization algorithms for landslide susceptibility mapping in Icheon, South Korea.
    Hakim WL; Rezaie F; Nur AS; Panahi M; Khosravi K; Lee CW; Lee S
    J Environ Manage; 2022 Mar; 305():114367. PubMed ID: 34968941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Landslide Susceptibility Based on CF-SVM in Nujiang Prefecture.
    Li Y; Deng X; Ji P; Yang Y; Jiang W; Zhao Z
    Int J Environ Res Public Health; 2022 Oct; 19(21):. PubMed ID: 36361126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan.
    Dou J; Yunus AP; Tien Bui D; Merghadi A; Sahana M; Zhu Z; Chen CW; Khosravi K; Yang Y; Pham BT
    Sci Total Environ; 2019 Apr; 662():332-346. PubMed ID: 30690368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Different Landslide Susceptibility Models for a Local Scale in the Chitral District, Northern Pakistan.
    Aslam B; Maqsoom A; Khalil U; Ghorbanzadeh O; Blaschke T; Farooq D; Tufail RF; Suhail SA; Ghamisi P
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rainfall-Induced Landslide Prediction Using Machine Learning Models: The Case of Ngororero District, Rwanda.
    Kuradusenge M; Kumaran S; Zennaro M
    Int J Environ Res Public Health; 2020 Jun; 17(11):. PubMed ID: 32532022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Introducing a novel multi-layer perceptron network based on stochastic gradient descent optimized by a meta-heuristic algorithm for landslide susceptibility mapping.
    Hong H; Tsangaratos P; Ilia I; Loupasakis C; Wang Y
    Sci Total Environ; 2020 Nov; 742():140549. PubMed ID: 32629264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid Integration Approach of Entropy with Logistic Regression and Support Vector Machine for Landslide Susceptibility Modeling.
    Zhang T; Han L; Chen W; Shahabi H
    Entropy (Basel); 2018 Nov; 20(11):. PubMed ID: 33266608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring machine learning and statistical approach techniques for landslide susceptibility mapping in Siwalik Himalayan Region using geospatial technology.
    Saha A; Tripathi L; Villuri VGK; Bhardwaj A
    Environ Sci Pollut Res Int; 2024 Feb; 31(7):10443-10459. PubMed ID: 38198087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 42.