BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30696119)

  • 21. Senescence-specific regulation of catalases in Arabidopsis thaliana (L.) Heynh.
    Zimmermann P; Heinlein C; Orendi G; Zentgraf U
    Plant Cell Environ; 2006 Jun; 29(6):1049-60. PubMed ID: 17080932
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ANAC032 Positively Regulates Age-Dependent and Stress-Induced Senescence in Arabidopsis thaliana.
    Mahmood K; El-Kereamy A; Kim SH; Nambara E; Rothstein SJ
    Plant Cell Physiol; 2016 Oct; 57(10):2029-2046. PubMed ID: 27388337
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The ethylene response factor AtERF11 that is transcriptionally modulated by the bZIP transcription factor HY5 is a crucial repressor for ethylene biosynthesis in Arabidopsis.
    Li Z; Zhang L; Yu Y; Quan R; Zhang Z; Zhang H; Huang R
    Plant J; 2011 Oct; 68(1):88-99. PubMed ID: 21645149
    [TBL] [Abstract][Full Text] [Related]  

  • 24. HSI2 Repressor Recruits MED13 and HDA6 to Down-Regulate Seed Maturation Gene Expression Directly During Arabidopsis Early Seedling Growth.
    Chhun T; Chong SY; Park BS; Wong EC; Yin JL; Kim M; Chua NH
    Plant Cell Physiol; 2016 Aug; 57(8):1689-706. PubMed ID: 27335347
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SPOROCYTELESS is a novel embryophyte-specific transcription repressor that interacts with TPL and TCP proteins in Arabidopsis.
    Chen GH; Sun JY; Liu M; Liu J; Yang WC
    J Genet Genomics; 2014 Dec; 41(12):617-25. PubMed ID: 25527103
    [TBL] [Abstract][Full Text] [Related]  

  • 26. AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis.
    Matsui K; Umemura Y; Ohme-Takagi M
    Plant J; 2008 Sep; 55(6):954-67. PubMed ID: 18532977
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The ETHYLENE RESPONSE FACTORs ERF6 and ERF11 Antagonistically Regulate Mannitol-Induced Growth Inhibition in Arabidopsis.
    Dubois M; Van den Broeck L; Claeys H; Van Vlierberghe K; Matsui M; Inzé D
    Plant Physiol; 2015 Sep; 169(1):166-79. PubMed ID: 25995327
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Overexpression of the CBF2 transcriptional activator in Arabidopsis suppresses the responsiveness of leaf tissue to the stress hormone ethylene.
    Sharabi-Schwager M; Samach A; Porat R
    Plant Biol (Stuttg); 2010 Jul; 12(4):630-8. PubMed ID: 20636906
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antagonistic Actions of FPA and IBM2 Regulate Transcript Processing from Genes Containing Heterochromatin.
    Deremetz A; Le Roux C; Idir Y; Brousse C; Agorio A; Gy I; Parker JE; Bouché N
    Plant Physiol; 2019 May; 180(1):392-403. PubMed ID: 30814131
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mutation of the Arabidopsis NAC016 transcription factor delays leaf senescence.
    Kim YS; Sakuraba Y; Han SH; Yoo SC; Paek NC
    Plant Cell Physiol; 2013 Oct; 54(10):1660-72. PubMed ID: 23926065
    [TBL] [Abstract][Full Text] [Related]  

  • 31. FIE and CURLY LEAF polycomb proteins interact in the regulation of homeobox gene expression during sporophyte development.
    Katz A; Oliva M; Mosquna A; Hakim O; Ohad N
    Plant J; 2004 Mar; 37(5):707-19. PubMed ID: 14871310
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NAC transcription factor ORE1 and senescence-induced BIFUNCTIONAL NUCLEASE1 (BFN1) constitute a regulatory cascade in Arabidopsis.
    Matallana-Ramirez LP; Rauf M; Farage-Barhom S; Dortay H; Xue GP; Dröge-Laser W; Lers A; Balazadeh S; Mueller-Roeber B
    Mol Plant; 2013 Sep; 6(5):1438-52. PubMed ID: 23340744
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A single-repeat MYB transcription repressor, MYBH, participates in regulation of leaf senescence in Arabidopsis.
    Huang CK; Lo PC; Huang LF; Wu SJ; Yeh CH; Lu CA
    Plant Mol Biol; 2015 Jun; 88(3):269-86. PubMed ID: 25920996
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nuclear targeted AtS40 modulates senescence associated gene expression in Arabidopsis thaliana during natural development and in darkness.
    Fischer-Kilbienski I; Miao Y; Roitsch T; Zschiesche W; Humbeck K; Krupinska K
    Plant Mol Biol; 2010 Jul; 73(4-5):379-90. PubMed ID: 20238146
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reduced function of the RNA-binding protein FPA rescues a T-DNA insertion mutant in the Arabidopsis ZHOUPI gene by promoting transcriptional read-through.
    Zhang Y; Li X; Goodrich J; Wu C; Wei H; Yang S; Feng X
    Plant Mol Biol; 2016 Jul; 91(4-5):549-61. PubMed ID: 27164978
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antagonistic control of flowering time by functionally specialized poly(A) polymerases in Arabidopsis thaliana.
    Czesnick H; Lenhard M
    Plant J; 2016 Nov; 88(4):570-583. PubMed ID: 27447095
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Direct Involvement of Dark-Induced Tic55 Protein in Chlorophyll Catabolism and Its Indirect Role in the MYB108-NAC Signaling Pathway during Leaf Senescence in
    Chou ML; Liao WY; Wei WC; Li AY; Chu CY; Wu CL; Liu CL; Fu TH; Lin LF
    Int J Mol Sci; 2018 Jun; 19(7):. PubMed ID: 29937503
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Seed Dormancy in Arabidopsis Requires Self-Binding Ability of DOG1 Protein and the Presence of Multiple Isoforms Generated by Alternative Splicing.
    Nakabayashi K; Bartsch M; Ding J; Soppe WJ
    PLoS Genet; 2015 Dec; 11(12):e1005737. PubMed ID: 26684465
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel group of transcriptional repressors in Arabidopsis.
    Ikeda M; Ohme-Takagi M
    Plant Cell Physiol; 2009 May; 50(5):970-5. PubMed ID: 19324928
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arabidopsis thaliana calcium-dependent lipid-binding protein (AtCLB): a novel repressor of abiotic stress response.
    de Silva K; Laska B; Brown C; Sederoff HW; Khodakovskaya M
    J Exp Bot; 2011 May; 62(8):2679-89. PubMed ID: 21252258
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.