These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 30696123)

  • 1. Miniature all-fiber axicon probe with extended Bessel focus for optical coherence tomography.
    Wang W; Wang G; Ma J; Cheng L; Guan BO
    Opt Express; 2019 Jan; 27(2):358-366. PubMed ID: 30696123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifocal spectral-domain optical coherence tomography based on Bessel beam for extended imaging depth.
    Yi L; Sun L; Ding W
    J Biomed Opt; 2017 Oct; 22(10):1-8. PubMed ID: 29076306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range.
    Lee KS; Rolland JP
    Opt Lett; 2008 Aug; 33(15):1696-8. PubMed ID: 18670507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrathin fiber probes with extended depth of focus for optical coherence tomography.
    Lorenser D; Yang X; Sampson DD
    Opt Lett; 2012 May; 37(10):1616-8. PubMed ID: 22627514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reflective axicon based energy-efficient extended depth of focus quasi-Bessel beam probe for common-path optical coherence tomography.
    Vairagi K; Gupta P; Tiwari UK; Mondal SK
    Appl Opt; 2023 Jan; 62(3):511-517. PubMed ID: 36821252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uniform focusing with an extended depth range and increased working distance for optical coherence tomography by an ultrathin monolith fiber probe.
    Qiu J; Han T; Liu Z; Meng J; Ding Z
    Opt Lett; 2020 Feb; 45(4):976-979. PubMed ID: 32058521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lens-free all-fiber probe with an optimized output beam for optical coherence tomography.
    Ding Z; Qiu J; Shen Y; Chen Z; Bao W
    Opt Lett; 2017 Jul; 42(14):2814-2817. PubMed ID: 28708176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-fiber negative axicon probe with a Bessel beam for cellular-level low coherence phase microscopy and refractive index measurement.
    Gupta P; Vairagi K; Mondal SK
    Opt Lett; 2022 Feb; 47(3):497-500. PubMed ID: 35103658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking.
    Xie T; Guo S; Chen Z; Mukai D; Brenner M
    Opt Express; 2006 Apr; 14(8):3238-46. PubMed ID: 19516465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extended depth of focus for coherence-based cellular imaging.
    Yin B; Hyun C; Gardecki JA; Tearney GJ
    Optica; 2017 Aug; 4(8):959-965. PubMed ID: 29675447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrathin lensed fiber-optic probe for optical coherence tomography.
    Qiu Y; Wang Y; Belfield KD; Liu X
    Biomed Opt Express; 2016 Jun; 7(6):2154-62. PubMed ID: 27375934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reflection-mode Bessel-beam photoacoustic microscopy for in vivo imaging of cerebral capillaries.
    Jiang B; Yang X; Luo Q
    Opt Express; 2016 Sep; 24(18):20167-76. PubMed ID: 27607624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extending the depth of focus of fiber-optic optical coherence tomography using a chromatic dual-focus design.
    Li J; Luo Y; Wang X; Wang N; Bo E; Chen S; Chen S; Chen S; Tsai MT; Liu L
    Appl Opt; 2018 Jul; 57(21):6040-6046. PubMed ID: 30118032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Piezoelectric-transducer-based miniature catheter for ultrahigh-speed endoscopic optical coherence tomography.
    Tsai TH; Potsaid B; Kraus MF; Zhou C; Tao YK; Hornegger J; Fujimoto JG
    Biomed Opt Express; 2011 Aug; 2(8):2438-48. PubMed ID: 21833379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfabricated endoscopic probe integrated MEMS micromirror for optical coherence tomography bioimaging.
    Wang MF; Xu Y; Prem CS; Chen KW; Xie J; Mu X; Tan CW; Yu A; Feng H
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():57-60. PubMed ID: 21095881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interferometric synthetic aperture microscopy for extended focus optical coherence microscopy.
    Coquoz S; Bouwens A; Marchand PJ; Extermann J; Lasser T
    Opt Express; 2017 Nov; 25(24):30807-30819. PubMed ID: 29221107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endoscopic micro-optical coherence tomography with extended depth of focus using a binary phase spatial filter.
    Kim J; Xing J; Nam HS; Song JW; Kim JW; Yoo H
    Opt Lett; 2017 Feb; 42(3):379-382. PubMed ID: 28146481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue characterization using axicon probe-assisted common-path optical coherence tomography.
    Gupta P; Vairagi K; Sharma V; Prasad KK; Mondal SK
    Opt Express; 2024 May; 32(11):20194-20206. PubMed ID: 38859135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Miniature forward-viewing common-path OCT probe for imaging the renal pelvis.
    Fu X; Patel D; Zhu H; MacLennan G; Wang YT; Jenkins MW; Rollins AM
    Biomed Opt Express; 2015 Apr; 6(4):1164-71. PubMed ID: 25909002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Miniature probe for all-optical double gradient-index lenses photoacoustic microscopy.
    Guo Z; Li G; Chen SL
    J Biophotonics; 2018 Dec; 11(12):e201800147. PubMed ID: 30003707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.