BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 30696245)

  • 21. Interfacial tension of a nematic liquid crystal/water interface with homeotropic surface alignment.
    Kim JW; Kim H; Lee M; Magda JJ
    Langmuir; 2004 Sep; 20(19):8110-3. PubMed ID: 15350080
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coupling of the orientations of thermotropic liquid crystals to protein binding events at lipid-decorated interfaces.
    Brake JM; Abbott NL
    Langmuir; 2007 Jul; 23(16):8497-507. PubMed ID: 17595119
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation of microscopic and planar oil-water interfaces that are decorated with prescribed densities of insoluble amphiphiles.
    Meli MV; Lin IH; Abbott NL
    J Am Chem Soc; 2008 Apr; 130(13):4326-33. PubMed ID: 18335929
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Specific detection of avidin-biotin binding using liquid crystal droplets.
    Khan M; Park SY
    Colloids Surf B Biointerfaces; 2015 Mar; 127():241-6. PubMed ID: 25689094
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simple and label-free liquid crystal-based sensor for detecting trypsin coupled to the interaction between cationic surfactant and BSA.
    Wang Y; Zhou L; Kang Q; Yu L
    Talanta; 2018 Jun; 183():223-227. PubMed ID: 29567168
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Configuration change of liquid crystal microdroplets coated with a novel polyacrylic acid block liquid crystalline polymer by protein adsorption.
    Khan W; Park SY
    Lab Chip; 2012 Nov; 12(21):4553-9. PubMed ID: 22964831
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals.
    Brake JM; Daschner MK; Luk YY; Abbott NL
    Science; 2003 Dec; 302(5653):2094-7. PubMed ID: 14684814
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfluidic formation of pH responsive 5CB droplets decorated with PAA-b-LCP.
    Khan W; Choi JH; Kim GM; Park SY
    Lab Chip; 2011 Oct; 11(20):3493-8. PubMed ID: 21874196
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sensitive detection of trypsin using liquid-crystal droplet patterns modulated by interactions between poly-L-lysine and a phospholipid monolayer.
    Zhang M; Jang CH
    Chemphyschem; 2014 Aug; 15(12):2569-74. PubMed ID: 24850496
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Label-free detection of viruses on a polymeric surface using liquid crystals.
    Han GR; Song YJ; Jang CH
    Colloids Surf B Biointerfaces; 2014 Apr; 116():147-52. PubMed ID: 24463151
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bending nematic liquid crystal membranes with phospholipids.
    Cumberland J; Lopatkina T; Murachver M; Popov P; Kenderesi V; Buka Á; Mann EK; Jákli A
    Soft Matter; 2018 Aug; 14(34):7003-7008. PubMed ID: 30109339
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Imaging trypsin activity through changes in the orientation of liquid crystals coupled to the interactions between a polyelectrolyte and a phospholipid layer.
    Hu QZ; Jang CH
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1791-5. PubMed ID: 22394113
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using liquid crystals to detect DNA hybridization on polymeric surfaces with continuous wavy features.
    Park SJ; Jang CH
    Nanotechnology; 2010 Oct; 21(42):425502. PubMed ID: 20858927
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Liquid crystal-based proton sensitive glucose biosensor.
    Khan M; Park SY
    Anal Chem; 2014 Feb; 86(3):1493-501. PubMed ID: 24432733
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Liquid crystal-based biosensor with backscattering interferometry: A quantitative approach.
    Khan M; Park SY
    Biosens Bioelectron; 2017 Jan; 87():976-983. PubMed ID: 27668725
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of 4-cyano-4'-biphenylcarboxylic acid on the orientational ordering of cyanobiphenyl liquid crystals at chemically functionalized surfaces.
    Park JS; Jang CH; Tingey ML; Lowe AM; Abbott NL
    J Colloid Interface Sci; 2006 Dec; 304(2):459-73. PubMed ID: 17022994
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Principles for manipulation of the lateral organization of aqueous-soluble surface-active molecules at the liquid crystal-aqueous interface.
    Gupta JK; Abbott NL
    Langmuir; 2009 Feb; 25(4):2026-33. PubMed ID: 19140731
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detection of organophosphorus pesticides with liquid crystals supported on the surface deposited with polyoxometalate-based acetylcholinesterase-responsive supramolecular spheres.
    Qi L; Wu W; Kang Q; Hu Q; Yu L
    Food Chem; 2020 Aug; 320():126683. PubMed ID: 32229401
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of the growth of polyelectrolyte multilayers formed at interfaces between aqueous phases and thermotropic liquid crystals.
    Gupta JK; Tjipto E; Zelikin AN; Caruso F; Abbott NL
    Langmuir; 2008 May; 24(10):5534-42. PubMed ID: 18419143
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detecting trypsin at liquid crystal/aqueous interface by using surface-immobilized bovine serum albumin.
    Chuang CH; Lin YC; Chen WL; Chen YH; Chen YX; Chen CM; Shiu HW; Chang LY; Chen CH; Chen CH
    Biosens Bioelectron; 2016 Apr; 78():213-220. PubMed ID: 26613511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.