These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 30696318)

  • 1.
    Sorathia N; Chawda N; Saraki K; Rajadhyaksha MS; Hejmadi M
    Int J Neurosci; 2019 Sep; 129(9):864-870. PubMed ID: 30696318
    [No Abstract]   [Full Text] [Related]  

  • 2. A HIF-independent mediator of transcriptional responses to oxygen deprivation in Caenorhabditis elegans.
    Padmanabha D; Padilla PA; You YJ; Baker KD
    Genetics; 2015 Mar; 199(3):739-48. PubMed ID: 25552276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gustatory plasticity in C. elegans involves integration of negative cues and NaCl taste mediated by serotonin, dopamine, and glutamate.
    Hukema RK; Rademakers S; Jansen G
    Learn Mem; 2008 Nov; 15(11):829-36. PubMed ID: 18984564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concentration memory-dependent synaptic plasticity of a taste circuit regulates salt concentration chemotaxis in Caenorhabditis elegans.
    Kunitomo H; Sato H; Iwata R; Satoh Y; Ohno H; Yamada K; Iino Y
    Nat Commun; 2013; 4():2210. PubMed ID: 23887678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HIF-1 is required for heat acclimation in the nematode Caenorhabditis elegans.
    Treinin M; Shliar J; Jiang H; Powell-Coffman JA; Bromberg Z; Horowitz M
    Physiol Genomics; 2003 Jun; 14(1):17-24. PubMed ID: 12686697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypoxia and the HIF-1 transcriptional pathway reorganize a neuronal circuit for oxygen-dependent behavior in Caenorhabditis elegans.
    Chang AJ; Bargmann CI
    Proc Natl Acad Sci U S A; 2008 May; 105(20):7321-6. PubMed ID: 18477695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myoinhibitory peptide signaling modulates aversive gustatory learning in Caenorhabditis elegans.
    Peymen K; Watteyne J; Borghgraef C; Van Sinay E; Beets I; Schoofs L
    PLoS Genet; 2019 Feb; 15(2):e1007945. PubMed ID: 30779740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronal plasticity regulated by the insulin-like signaling pathway underlies salt chemotaxis learning in Caenorhabditis elegans.
    Oda S; Tomioka M; Iino Y
    J Neurophysiol; 2011 Jul; 106(1):301-8. PubMed ID: 21525368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antagonistic sensory cues generate gustatory plasticity in Caenorhabditis elegans.
    Hukema RK; Rademakers S; Dekkers MP; Burghoorn J; Jansen G
    EMBO J; 2006 Jan; 25(2):312-22. PubMed ID: 16407969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creating defined gaseous environments to study the effects of hypoxia on C. elegans.
    Fawcett EM; Horsman JW; Miller DL
    J Vis Exp; 2012 Jul; (65):e4088. PubMed ID: 22850348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CYSL-1 interacts with the O2-sensing hydroxylase EGL-9 to promote H2S-modulated hypoxia-induced behavioral plasticity in C. elegans.
    Ma DK; Vozdek R; Bhatla N; Horvitz HR
    Neuron; 2012 Mar; 73(5):925-40. PubMed ID: 22405203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole genome profiling of short-term hypoxia induced genes and identification of HIF-1 binding sites provide insights into HIF-1 function in Caenorhabditis elegans.
    Feng D; Qu L; Powell-Coffman JA
    PLoS One; 2024; 19(5):e0295094. PubMed ID: 38743782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Step-response analysis of chemotaxis in Caenorhabditis elegans.
    Miller AC; Thiele TR; Faumont S; Moravec ML; Lockery SR
    J Neurosci; 2005 Mar; 25(13):3369-78. PubMed ID: 15800192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vasopressin/oxytocin-related signaling regulates gustatory associative learning in C. elegans.
    Beets I; Janssen T; Meelkop E; Temmerman L; Suetens N; Rademakers S; Jansen G; Schoofs L
    Science; 2012 Oct; 338(6106):543-5. PubMed ID: 23112336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen levels affect axon guidance and neuronal migration in Caenorhabditis elegans.
    Pocock R; Hobert O
    Nat Neurosci; 2008 Aug; 11(8):894-900. PubMed ID: 18587389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Caenorhabditis elegans hif-1 gene encodes a bHLH-PAS protein that is required for adaptation to hypoxia.
    Jiang H; Guo R; Powell-Coffman JA
    Proc Natl Acad Sci U S A; 2001 Jul; 98(14):7916-21. PubMed ID: 11427734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon monoxide-induced suspended animation protects against hypoxic damage in Caenorhabditis elegans.
    Nystul TG; Roth MB
    Proc Natl Acad Sci U S A; 2004 Jun; 101(24):9133-6. PubMed ID: 15184665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic analysis of hypoxia signaling and response in C elegans.
    Shen C; Powell-Coffman JA
    Ann N Y Acad Sci; 2003 May; 995():191-9. PubMed ID: 12814951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of elongin C promotes longevity and protein homeostasis via HIF-1 in C. elegans.
    Hwang W; Artan M; Seo M; Lee D; Nam HG; Lee SJ
    Aging Cell; 2015 Dec; 14(6):995-1002. PubMed ID: 26361075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome analyses describe the consequences of persistent HIF-1 over-activation in Caenorhabditis elegans.
    Feng D; Qu L; Powell-Coffman JA
    PLoS One; 2024; 19(3):e0295093. PubMed ID: 38517909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.