These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

45 related articles for article (PubMed ID: 30696768)

  • 21. Mechanism of inhibition of aliphatic epoxide carboxylation by the coenzyme M analog 2-bromoethanesulfonate.
    Boyd JM; Clark DD; Kofoed MA; Ensign SA
    J Biol Chem; 2010 Aug; 285(33):25232-42. PubMed ID: 20551308
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural basis of perturbed pKa values of catalytic groups in enzyme active sites.
    Harris TK; Turner GJ
    IUBMB Life; 2002 Feb; 53(2):85-98. PubMed ID: 12049200
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanism of Rubisco: The Carbamate as General Base.
    Cleland WW; Andrews TJ; Gutteridge S; Hartman FC; Lorimer GH
    Chem Rev; 1998 Apr; 98(2):549-562. PubMed ID: 11848907
    [No Abstract]   [Full Text] [Related]  

  • 24. Thioredoxin reductase two modes of catalysis have evolved.
    Williams CH; Arscott LD; Müller S; Lennon BW; Ludwig ML; Wang PF; Veine DM; Becker K; Schirmer RH
    Eur J Biochem; 2000 Oct; 267(20):6110-7. PubMed ID: 11012662
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of five catalytic activities associated with the NADPH:2-ketopropyl-coenzyme M [2-(2-ketopropylthio)ethanesulfonate] oxidoreductase/carboxylase of the Xanthobacter strain Py2 epoxide carboxylase system.
    Clark DD; Allen JR; Ensign SA
    Biochemistry; 2000 Feb; 39(6):1294-304. PubMed ID: 10684609
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Redox potentials for yeast, Escherichia coli and human glutathione reductase relative to the NAD+/NADH redox couple: enzyme forms active in catalysis.
    Veine DM; Arscott LD; Williams CH
    Biochemistry; 1998 Nov; 37(44):15575-82. PubMed ID: 9799522
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Purification and characterization of a flavoprotein involved in the degradation of epoxyalkanes by Xanthobacter Py2.
    Westphal AH; Swaving J; Jacobs L; De Kok A
    Eur J Biochem; 1998 Oct; 257(1):160-8. PubMed ID: 9799115
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrostatic coupling between retinal isomerization and the ionization state of Glu-204: a general mechanism for proton release in bacteriorhodopsin.
    Sampogna RV; Honig B
    Biophys J; 1996 Sep; 71(3):1165-71. PubMed ID: 8873990
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrostatic calculations of side-chain pK(a) values in myoglobin and comparison with NMR data for histidines.
    Bashford D; Case DA; Dalvit C; Tennant L; Wright PE
    Biochemistry; 1993 Aug; 32(31):8045-56. PubMed ID: 8347606
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reductive and oxidative half-reactions of glutathione reductase from Escherichia coli.
    Rietveld P; Arscott LD; Berry A; Scrutton NS; Deonarain MP; Perham RN; Williams CH
    Biochemistry; 1994 Nov; 33(46):13888-95. PubMed ID: 7947797
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Individual ionization constants of all the carboxyl groups in ribonuclease HI from Escherichia coli determined by NMR.
    Oda Y; Yamazaki T; Nagayama K; Kanaya S; Kuroda Y; Nakamura H
    Biochemistry; 1994 May; 33(17):5275-84. PubMed ID: 7909691
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proton sharing between cysteine thiols in Escherichia coli thioredoxin: implications for the mechanism of protein disulfide reduction.
    Jeng MF; Holmgren A; Dyson HJ
    Biochemistry; 1995 Aug; 34(32):10101-5. PubMed ID: 7640264
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glutathione reductase from yeast. Differential reactivity of the nascent thiols in two-electron reduced enzyme and properties of a monoalkylated derivative.
    Arscott LD; Thorpe C; Williams CH
    Biochemistry; 1981 Mar; 20(6):1513-20. PubMed ID: 7013796
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetic studies of the mechanism of pyridine nucleotide dependent reduction of yeast glutathione reductase.
    Huber PW; Brandt KG
    Biochemistry; 1980 Sep; 19(20):4569-75. PubMed ID: 7000180
    [No Abstract]   [Full Text] [Related]  

  • 35. Lipoamide dehydrogenase from pig heart. Pyridine nucleotide induced changes in monoalkylated two-electron reduced enzyme.
    Thorpe C; Williams CH
    Biochemistry; 1981 Mar; 20(6):1507-13. PubMed ID: 6894384
    [No Abstract]   [Full Text] [Related]  

  • 36. The active site of aspartic proteinases.
    Pearl L; Blundell T
    FEBS Lett; 1984 Aug; 174(1):96-101. PubMed ID: 6381096
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mercuric reductase. Purification and characterization of a transposon-encoded flavoprotein containing an oxidation-reduction-active disulfide.
    Fox B; Walsh CT
    J Biol Chem; 1982 Mar; 257(5):2498-503. PubMed ID: 6277900
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The proton inventory technique.
    Venkatasubban KS; Schowen RL
    CRC Crit Rev Biochem; 1984; 17(1):1-44. PubMed ID: 6094099
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Alternative proton donors/acceptors in the catalytic mechanism of the glutathione reductase of Escherichia coli: the role of histidine-439 and tyrosine-99.
    Deonarain MP; Berry A; Scrutton NS; Perham RN
    Biochemistry; 1989 Dec; 28(25):9602-7. PubMed ID: 2558727
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The structure and function of the aspartic proteinases.
    Davies DR
    Annu Rev Biophys Biophys Chem; 1990; 19():189-215. PubMed ID: 2194475
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.