BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 30696821)

  • 1. Mechanism of IRSp53 inhibition by 14-3-3.
    Kast DJ; Dominguez R
    Nat Commun; 2019 Jan; 10(1):483. PubMed ID: 30696821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IRSp53 coordinates AMPK and 14-3-3 signaling to regulate filopodia dynamics and directed cell migration.
    Kast DJ; Dominguez R
    Mol Biol Cell; 2019 May; 30(11):1285-1297. PubMed ID: 30893014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of IRSp53-dependent filopodial dynamics by antagonism between 14-3-3 binding and SH3-mediated localization.
    Robens JM; Yeow-Fong L; Ng E; Hall C; Manser E
    Mol Cell Biol; 2010 Feb; 30(3):829-44. PubMed ID: 19933840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of IRSp53 inhibition and combinatorial activation by Cdc42 and downstream effectors.
    Kast DJ; Yang C; Disanza A; Boczkowska M; Madasu Y; Scita G; Svitkina T; Dominguez R
    Nat Struct Mol Biol; 2014 Apr; 21(4):413-22. PubMed ID: 24584464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of cell shape by Cdc42 is mediated by the synergic actin-bundling activity of the Eps8-IRSp53 complex.
    Disanza A; Mantoani S; Hertzog M; Gerboth S; Frittoli E; Steffen A; Berhoerster K; Kreienkamp HJ; Milanesi F; Di Fiore PP; Ciliberto A; Stradal TE; Scita G
    Nat Cell Biol; 2006 Dec; 8(12):1337-47. PubMed ID: 17115031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cdc42 induces filopodia by promoting the formation of an IRSp53:Mena complex.
    Krugmann S; Jordens I; Gevaert K; Driessens M; Vandekerckhove J; Hall A
    Curr Biol; 2001 Oct; 11(21):1645-55. PubMed ID: 11696321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. I-BAR domains, IRSp53 and filopodium formation.
    Ahmed S; Goh WI; Bu W
    Semin Cell Dev Biol; 2010 Jun; 21(4):350-6. PubMed ID: 19913105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. mDia1 and WAVE2 proteins interact directly with IRSp53 in filopodia and are involved in filopodium formation.
    Goh WI; Lim KB; Sudhaharan T; Sem KP; Bu W; Chou AM; Ahmed S
    J Biol Chem; 2012 Feb; 287(7):4702-14. PubMed ID: 22179776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rif-mDia1 interaction is involved in filopodium formation independent of Cdc42 and Rac effectors.
    Goh WI; Sudhaharan T; Lim KB; Sem KP; Lau CL; Ahmed S
    J Biol Chem; 2011 Apr; 286(15):13681-94. PubMed ID: 21339294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The insulin receptor substrate IRSp53 links postsynaptic shank1 to the small G-protein cdc42.
    Soltau M; Richter D; Kreienkamp HJ
    Mol Cell Neurosci; 2002 Dec; 21(4):575-83. PubMed ID: 12504591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamin1 is a novel target for IRSp53 protein and works with mammalian enabled (Mena) protein and Eps8 to regulate filopodial dynamics.
    Chou AM; Sem KP; Wright GD; Sudhaharan T; Ahmed S
    J Biol Chem; 2014 Aug; 289(35):24383-96. PubMed ID: 25031323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of dendritic spine morphogenesis by insulin receptor substrate 53, a downstream effector of Rac1 and Cdc42 small GTPases.
    Choi J; Ko J; Racz B; Burette A; Lee JR; Kim S; Na M; Lee HW; Kim K; Weinberg RJ; Kim E
    J Neurosci; 2005 Jan; 25(4):869-79. PubMed ID: 15673667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the insulin-responsive tyrosine phosphorylation sites on IRSp53.
    Heung MY; Visegrady B; Fütterer K; Machesky LM
    Eur J Cell Biol; 2008 Sep; 87(8-9):699-708. PubMed ID: 18417251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IRSp53/BAIAP2 in dendritic spine development, NMDA receptor regulation, and psychiatric disorders.
    Kang J; Park H; Kim E
    Neuropharmacology; 2016 Jan; 100():27-39. PubMed ID: 26275848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tiam1-IRSp53 complex formation directs specificity of rac-mediated actin cytoskeleton regulation.
    Connolly BA; Rice J; Feig LA; Buchsbaum RJ
    Mol Cell Biol; 2005 Jun; 25(11):4602-14. PubMed ID: 15899863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LIN7 regulates the filopodium- and neurite-promoting activity of IRSp53.
    Crespi A; Ferrari I; Lonati P; Disanza A; Fornasari D; Scita G; Padovano V; Pietrini G
    J Cell Sci; 2012 Oct; 125(Pt 19):4543-54. PubMed ID: 22767515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IRSp53 promotes postsynaptic density formation and actin filament bundling.
    Feng Z; Lee S; Jia B; Jian T; Kim E; Zhang M
    J Cell Biol; 2022 Aug; 221(8):. PubMed ID: 35819332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Missing-in-metastasis and IRSp53 deform PI(4,5)P2-rich membranes by an inverse BAR domain-like mechanism.
    Mattila PK; Pykäläinen A; Saarikangas J; Paavilainen VO; Vihinen H; Jokitalo E; Lappalainen P
    J Cell Biol; 2007 Mar; 176(7):953-64. PubMed ID: 17371834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis of filopodia formation induced by the IRSp53/MIM homology domain of human IRSp53.
    Millard TH; Bompard G; Heung MY; Dafforn TR; Scott DJ; Machesky LM; Fütterer K
    EMBO J; 2005 Jan; 24(2):240-50. PubMed ID: 15635447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kank attenuates actin remodeling by preventing interaction between IRSp53 and Rac1.
    Roy BC; Kakinuma N; Kiyama R
    J Cell Biol; 2009 Jan; 184(2):253-67. PubMed ID: 19171758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.