BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 30696888)

  • 1. Melamine promotes calcium crystal formation in three-dimensional microfluidic device.
    Gombedza F; Evans S; Shin S; Awuah Boadi E; Zhang Q; Nie Z; Bandyopadhyay BC
    Sci Rep; 2019 Jan; 9(1):875. PubMed ID: 30696888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Matting Calcium Crystals by Melamine Improves Stabilization and Prevents Dissolution.
    Boadi EA; Deems NJ; Raub CB; Bandyopadhyay BC
    Cryst Growth Des; 2019 Nov; 19(11):6636-6648. PubMed ID: 31749663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the role of calcium phosphate in the process of calcium oxalate crystal formation.
    Tiselius HG; Lindbäck B; Fornander AM; Nilsson MA
    Urol Res; 2009 Aug; 37(4):181-92. PubMed ID: 19444436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential role of fluctuations in the composition of renal tubular fluid through the nephron in the initiation of Randall's plugs and calcium oxalate crystalluria in a computer model of renal function.
    Robertson WG
    Urolithiasis; 2015 Jan; 43 Suppl 1():93-107. PubMed ID: 25407799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Rise in Tubular pH during Hypercalciuria Exacerbates Calcium Stone Formation.
    Gombedza FC; Shin S; Sadiua J; Stackhouse GB; Bandyopadhyay BC
    Int J Mol Sci; 2024 Apr; 25(9):. PubMed ID: 38732005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of biomolecules from human renal matrix of calcium oxalate monohydrate (CaOx) stones on in vitro calcium phosphate crystallization.
    Pathak P; Singh SK; Tandon C
    Int Braz J Urol; 2010; 36(5):621-8. PubMed ID: 21044380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deposition of calcium phosphate and calcium oxalate crystals in the kidneys.
    Khan SR; Glenton PA
    J Urol; 1995 Mar; 153(3 Pt 1):811-7. PubMed ID: 7861545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of seed crystals of hydroxyapatite and brushite on the crystallization of calcium oxalate in undiluted human urine in vitro: implications for urinary stone pathogenesis.
    Grover PK; Kim DS; Ryall RL
    Mol Med; 2002 Apr; 8(4):200-9. PubMed ID: 12149569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence of upper limit of metastability on supersaturation in nephrolithiasis.
    Asplin JR; Parks JH; Coe FL
    Kidney Int; 1997 Dec; 52(6):1602-8. PubMed ID: 9407506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Presence of lipids in urine, crystals and stones: implications for the formation of kidney stones.
    Khan SR; Glenton PA; Backov R; Talham DR
    Kidney Int; 2002 Dec; 62(6):2062-72. PubMed ID: 12427130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hypothesis of calcium stone formation: an interpretation of stone research during the past decades.
    Tiselius HG
    Urol Res; 2011 Aug; 39(4):231-43. PubMed ID: 21246193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathophysiology-based treatment of idiopathic calcium kidney stones.
    Coe FL; Evan A; Worcester E
    Clin J Am Soc Nephrol; 2011 Aug; 6(8):2083-92. PubMed ID: 21825103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An oxalate-binding protein with crystal growth promoter activity from human kidney stone matrix.
    Govindaraj A; Selvam R
    BJU Int; 2002 Aug; 90(3):336-44. PubMed ID: 12133075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal-induced inflammation of the kidneys: results from human studies, animal models, and tissue-culture studies.
    Khan SR
    Clin Exp Nephrol; 2004 Jun; 8(2):75-88. PubMed ID: 15235923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of urine composition and calcium salt crystallization properties in standardized volume-adjusted 12-h night urine from normal subjects and calcium oxalate stone formers.
    Bek-Jensen H; Tiselius HG
    Urol Res; 1997; 25(5):365-72. PubMed ID: 9373919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a two-stage model system to investigate the mineralization mechanisms involved in idiopathic stone formation: stage 2 in vivo studies of stone growth on biomimetic Randall's plaque.
    O'Kell AL; Lovett AC; Canales BK; Gower LB; Khan SR
    Urolithiasis; 2019 Aug; 47(4):335-346. PubMed ID: 30218116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased expression of monocyte chemoattractant protein-1 (MCP-1) by renal epithelial cells in culture on exposure to calcium oxalate, phosphate and uric acid crystals.
    Umekawa T; Chegini N; Khan SR
    Nephrol Dial Transplant; 2003 Apr; 18(4):664-9. PubMed ID: 12637633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between supersaturation and crystal inhibition in hypercalciuric rats.
    Asplin JR; Bushinsky DA; Singharetnam W; Riordon D; Parks JH; Coe FL
    Kidney Int; 1997 Mar; 51(3):640-5. PubMed ID: 9067894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallization during volume reduction of solutions with an ion-composition corresponding to that in the distal tubuli.
    Højgaard I; Fornander AM; Nilsson MA; Tiselius HG
    Scanning Microsc; 1996; 10(2):487-97; discussion 497-8. PubMed ID: 9813626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of proteins extracted from calcium oxalate and calcium phosphate crystals induced in the urine of healthy and stone forming subjects.
    Atmani F; Glenton PA; Khan SR
    Urol Res; 1998; 26(3):201-7. PubMed ID: 9694603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.