These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
420 related articles for article (PubMed ID: 30696904)
1. Improved Cd, Zn and Mn tolerance and reduced Cd accumulation in grains with wheat-based cell number regulator TaCNR2. Qiao K; Wang F; Liang S; Wang H; Hu Z; Chai T Sci Rep; 2019 Jan; 9(1):870. PubMed ID: 30696904 [TBL] [Abstract][Full Text] [Related]
2. Wheat Cell Number Regulator CNR10 Enhances the Tolerance, Translocation, and Accumulation of Heavy Metals in Plants. Qiao K; Tian Y; Hu Z; Chai T Environ Sci Technol; 2019 Jan; 53(2):860-867. PubMed ID: 30532961 [TBL] [Abstract][Full Text] [Related]
3. New Biofortification Tool: Wheat TaCNR5 Enhances Zinc and Manganese Tolerance and Increases Zinc and Manganese Accumulation in Rice Grains. Qiao K; Wang F; Liang S; Wang H; Hu Z; Chai T J Agric Food Chem; 2019 Sep; 67(35):9877-9884. PubMed ID: 31398030 [TBL] [Abstract][Full Text] [Related]
4. Sulfur supply reduces cadmium uptake and translocation in rice grains (Oryza sativa L.) by enhancing iron plaque formation, cadmium chelation and vacuolar sequestration. Cao ZZ; Qin ML; Lin XY; Zhu ZW; Chen MX Environ Pollut; 2018 Jul; 238():76-84. PubMed ID: 29547864 [TBL] [Abstract][Full Text] [Related]
5. Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination. Abbas T; Rizwan M; Ali S; Zia-Ur-Rehman M; Farooq Qayyum M; Abbas F; Hannan F; Rinklebe J; Sik Ok Y Ecotoxicol Environ Saf; 2017 Jun; 140():37-47. PubMed ID: 28231504 [TBL] [Abstract][Full Text] [Related]
6. Zinc-biofortified wheat accumulates more cadmium in grains than standard wheat when grown on cadmium-contaminated soil regardless of soil and foliar zinc application. Hussain S; Khan AM; Rengel Z Sci Total Environ; 2019 Mar; 654():402-408. PubMed ID: 30447578 [TBL] [Abstract][Full Text] [Related]
7. Expression of TpNRAMP5, a metal transporter from Polish wheat (Triticum polonicum L.), enhances the accumulation of Cd, Co and Mn in transgenic Arabidopsis plants. Peng F; Wang C; Zhu J; Zeng J; Kang H; Fan X; Sha L; Zhang H; Zhou Y; Wang Y Planta; 2018 Jun; 247(6):1395-1406. PubMed ID: 29523961 [TBL] [Abstract][Full Text] [Related]
9. [Effects of intercropping Sedum plumbizincicola in wheat growth season under wheat-rice rotation on the crops growth and their heavy metals uptake from different soil types]. Zhao B; Shen LB; Cheng MM; Wang SF; Wu LH; Zhou SB; Luo YM Ying Yong Sheng Tai Xue Bao; 2011 Oct; 22(10):2725-31. PubMed ID: 22263481 [TBL] [Abstract][Full Text] [Related]
10. Co-expression of multiple heavy metal transporters changes the translocation, accumulation, and potential oxidative stress of Cd and Zn in rice (Oryza sativa). Tian S; Liang S; Qiao K; Wang F; Zhang Y; Chai T J Hazard Mater; 2019 Dec; 380():120853. PubMed ID: 31279944 [TBL] [Abstract][Full Text] [Related]
11. Producing cadmium-free Indica rice by overexpressing OsHMA3. Lu C; Zhang L; Tang Z; Huang XY; Ma JF; Zhao FJ Environ Int; 2019 May; 126():619-626. PubMed ID: 30856449 [TBL] [Abstract][Full Text] [Related]
12. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. Sasaki A; Yamaji N; Ma JF J Exp Bot; 2014 Nov; 65(20):6013-21. PubMed ID: 25151617 [TBL] [Abstract][Full Text] [Related]
13. Route and Regulation of Zinc, Cadmium, and Iron Transport in Rice Plants (Oryza sativa L.) during Vegetative Growth and Grain Filling: Metal Transporters, Metal Speciation, Grain Cd Reduction and Zn and Fe Biofortification. Yoneyama T; Ishikawa S; Fujimaki S Int J Mol Sci; 2015 Aug; 16(8):19111-29. PubMed ID: 26287170 [TBL] [Abstract][Full Text] [Related]
14. Effects of alkaline and bioorganic amendments on cadmium, lead, zinc, and nutrient accumulation in brown rice and grain yield in acidic paddy fields contaminated with a mixture of heavy metals. He H; Tam NF; Yao A; Qiu R; Li WC; Ye Z Environ Sci Pollut Res Int; 2016 Dec; 23(23):23551-23560. PubMed ID: 27614643 [TBL] [Abstract][Full Text] [Related]
15. Effects of organic-inorganic amendments on the cadmium fraction in soil and its accumulation in rice (Oryza sativa L.). Li B; Yang L; Wang CQ; Zheng SQ; Xiao R; Guo Y Environ Sci Pollut Res Int; 2019 May; 26(14):13762-13772. PubMed ID: 30120729 [TBL] [Abstract][Full Text] [Related]
16. Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Hussain A; Ali S; Rizwan M; Zia Ur Rehman M; Javed MR; Imran M; Chatha SAS; Nazir R Environ Pollut; 2018 Nov; 242(Pt B):1518-1526. PubMed ID: 30144725 [TBL] [Abstract][Full Text] [Related]
17. Long-term organic matter application reduces cadmium but not zinc concentrations in wheat. Grüter R; Costerousse B; Mayer J; Mäder P; Thonar C; Frossard E; Schulin R; Tandy S Sci Total Environ; 2019 Jun; 669():608-620. PubMed ID: 30893620 [TBL] [Abstract][Full Text] [Related]
18. Foliar application with nano-silicon reduced cadmium accumulation in grains by inhibiting cadmium translocation in rice plants. Chen R; Zhang C; Zhao Y; Huang Y; Liu Z Environ Sci Pollut Res Int; 2018 Jan; 25(3):2361-2368. PubMed ID: 29124638 [TBL] [Abstract][Full Text] [Related]
19. Silicon-Mediated Enhancement of Heavy Metal Tolerance in Rice at Different Growth Stages. Huang F; Wen XH; Cai YX; Cai KZ Int J Environ Res Public Health; 2018 Oct; 15(10):. PubMed ID: 30297625 [TBL] [Abstract][Full Text] [Related]
20. Overexpression of the manganese/cadmium transporter OsNRAMP5 reduces cadmium accumulation in rice grain. Chang JD; Huang S; Konishi N; Wang P; Chen J; Huang XY; Ma JF; Zhao FJ J Exp Bot; 2020 Sep; 71(18):5705-5715. PubMed ID: 32542348 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]