These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 30697140)

  • 21. Two-Dimensional Ti
    Driscoll N; Richardson AG; Maleski K; Anasori B; Adewole O; Lelyukh P; Escobedo L; Cullen DK; Lucas TH; Gogotsi Y; Vitale F
    ACS Nano; 2018 Oct; 12(10):10419-10429. PubMed ID: 30207690
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanostructures: a platform for brain repair and augmentation.
    Vidu R; Rahman M; Mahmoudi M; Enachescu M; Poteca TD; Opris I
    Front Syst Neurosci; 2014; 8():91. PubMed ID: 24999319
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomimetic Approaches Toward Smart Bio-hybrid Systems.
    Luo Z; Weiss DE; Liu Q; Tian B
    Nano Res; 2018 Jun; 11(6):3009-3030. PubMed ID: 30906509
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The nanomaterial toolkit for neuroengineering.
    Shah S
    Nano Converg; 2016; 3(1):25. PubMed ID: 28191435
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanotechnology-Enabled Biosensors: A Review of Fundamentals, Design Principles, Materials, and Applications.
    Ramesh M; Janani R; Deepa C; Rajeshkumar L
    Biosensors (Basel); 2022 Dec; 13(1):. PubMed ID: 36671875
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carbon Nanomaterials in Biological Studies and Biomedicine.
    Teradal NL; Jelinek R
    Adv Healthc Mater; 2017 Sep; 6(17):. PubMed ID: 28777502
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Smart Hydrogels Meet Carbon Nanomaterials for New Frontiers in Medicine.
    Adorinni S; Rozhin P; Marchesan S
    Biomedicines; 2021 May; 9(5):. PubMed ID: 34070138
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carbon-based nanomaterials for tissue engineering.
    Ku SH; Lee M; Park CB
    Adv Healthc Mater; 2013 Feb; 2(2):244-60. PubMed ID: 23184559
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transparent carbon nanotubes promote the outgrowth of enthorino-dentate projections in lesioned organ slice cultures.
    Pampaloni NP; Rago I; Calaresu I; Cozzarini L; Casalis L; Goldoni A; Ballerini L; Scaini D
    Dev Neurobiol; 2020 Sep; 80(9-10):316-331. PubMed ID: 31314946
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Graphene nanostructures for input-output bioelectronics.
    Garg R; Roman DS; Wang Y; Cohen-Karni D; Cohen-Karni T
    Biophys Rev (Melville); 2021 Dec; 2(4):041304. PubMed ID: 35005709
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of Ti3C2 MXene Microelectrode Arrays for In Vivo Neural Recording.
    Driscoll N; Maleski K; Richardson AG; Murphy B; Anasori B; Lucas TH; Gogotsi Y; Vitale F
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32116295
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bio-inspired nano tools for neuroscience.
    Das S; Carnicer-Lombarte A; Fawcett JW; Bora U
    Prog Neurobiol; 2016 Jul; 142():1-22. PubMed ID: 27107796
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Review on Carbon Nanomaterials-Based Nano-Mass and Nano-Force Sensors by Theoretical Analysis of Vibration Behavior.
    Shi JX; Lei XW; Natsuki T
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33803252
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multifaceted Biomedical Applications of Functional Graphene Nanomaterials to Coated Substrates, Patterned Arrays and Hybrid Scaffolds.
    Shin YC; Song SJ; Hong SW; Jeong SJ; Chrzanowski W; Lee JC; Han DW
    Nanomaterials (Basel); 2017 Nov; 7(11):. PubMed ID: 29113052
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Filtration-processed biomass nanofiber electrodes for flexible bioelectronics.
    Ando D; Teshima TF; Zurita F; Peng H; Ogura K; Kondo K; Weiß L; Hirano-Iwata A; Becherer M; Alexander J; Wolfrum B
    J Nanobiotechnology; 2022 Nov; 20(1):491. PubMed ID: 36403048
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photo-Responsive Graphene and Carbon Nanotubes to Control and Tackle Biological Systems.
    Cardano F; Frasconi M; Giordani S
    Front Chem; 2018; 6():102. PubMed ID: 29707534
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors.
    Naresh V; Lee N
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33562639
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural recording.
    Patil AC; Thakor NV
    Med Biol Eng Comput; 2016 Jan; 54(1):23-44. PubMed ID: 26753777
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanowire-Enabled Bioelectronics.
    Zhang A; Lee JH; Lieber CM
    Nano Today; 2021 Jun; 38():. PubMed ID: 36970717
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physical and chemical properties of carbon nanotubes in view of mechanistic neuroscience investigations. Some outlook from condensed matter, materials science and physical chemistry.
    Mezzasalma SA; Grassi L; Grassi M
    Mater Sci Eng C Mater Biol Appl; 2021 Dec; 131():112480. PubMed ID: 34857266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.