These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42 related articles for article (PubMed ID: 3069729)
21. Chromosome 1 rearrangements involving the genes TPR and NTRK1 produce structurally different thyroid-specific TRK oncogenes. Greco A; Miranda C; Pagliardini S; Fusetti L; Bongarzone I; Pierotti MA Genes Chromosomes Cancer; 1997 Jun; 19(2):112-23. PubMed ID: 9172002 [TBL] [Abstract][Full Text] [Related]
22. Differential expression of the blk and ret tyrosine kinases during B lineage development is dependent on Ig rearrangement. Wasserman R; Li YS; Hardy RR J Immunol; 1995 Jul; 155(2):644-51. PubMed ID: 7608542 [TBL] [Abstract][Full Text] [Related]
23. fau cDNA encodes a ubiquitin-like-S30 fusion protein and is expressed as an antisense sequence in the Finkel-Biskis-Reilly murine sarcoma virus. Michiels L; Van der Rauwelaert E; Van Hasselt F; Kas K; Merregaert J Oncogene; 1993 Sep; 8(9):2537-46. PubMed ID: 8395683 [TBL] [Abstract][Full Text] [Related]
24. BRAF V600E and RET/PTC Promote the Activity of Nuclear Factor-κB, Inflammatory Mediators, and Lymph Node Metastasis in Papillary Thyroid Carcinoma: A Study of 50 Patients in Inner Mongolia. Zhou D; Li Z; Bai X Med Sci Monit; 2018 Sep; 24():6795-6808. PubMed ID: 30254191 [TBL] [Abstract][Full Text] [Related]
25. BRAFV600E and RET/PTC Promote Proliferation and Migration of Papillary Thyroid Carcinoma Cells In Vitro by Regulating Nuclear Factor-κB. Zhou D; Li Z; Bai X Med Sci Monit; 2017 Nov; 23():5321-5329. PubMed ID: 29117154 [TBL] [Abstract][Full Text] [Related]
26. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. Ciampi R; Knauf JA; Kerler R; Gandhi M; Zhu Z; Nikiforova MN; Rabes HM; Fagin JA; Nikiforov YE J Clin Invest; 2005 Jan; 115(1):94-101. PubMed ID: 15630448 [TBL] [Abstract][Full Text] [Related]
27. RET/PTC rearrangement in thyroid tumors. Nikiforov YE Endocr Pathol; 2002; 13(1):3-16. PubMed ID: 12114746 [TBL] [Abstract][Full Text] [Related]
28. Ret/PTC3 is the most frequent form of gene rearrangement in papillary thyroid carcinomas in Japan. Kitamura Y; Minobe K; Nakata T; Shimizu K; Tanaka S; Fujimori M; Yokoyama S; Ito K; Onda M; Emi M J Hum Genet; 1999; 44(2):96-102. PubMed ID: 10083732 [TBL] [Abstract][Full Text] [Related]
29. Oncogenic rearrangements of the RET proto-oncogene in papillary thyroid carcinomas from children exposed to the Chernobyl nuclear accident. Fugazzola L; Pilotti S; Pinchera A; Vorontsova TV; Mondellini P; Bongarzone I; Greco A; Astakhova L; Butti MG; Demidchik EP Cancer Res; 1995 Dec; 55(23):5617-20. PubMed ID: 7585643 [TBL] [Abstract][Full Text] [Related]
30. Molecular cloning and characterization of human ret-II oncogene. Ishizaka Y; Tahira T; Ochiai M; Ikeda I; Sugimura T; Nagao M Oncogene Res; 1988 Sep; 3(2):193-7. PubMed ID: 3226727 [TBL] [Abstract][Full Text] [Related]
31. The carboxyl domain of zinc fingers of the Evi-1 myeloid transforming gene binds a consensus sequence of GAAGATGAG. Funabiki T; Kreider BL; Ihle JN Oncogene; 1994 Jun; 9(6):1575-81. PubMed ID: 8183551 [TBL] [Abstract][Full Text] [Related]
32. Structure and expression of the ret transforming gene. Takahashi M IARC Sci Publ; 1988; (92):189-97. PubMed ID: 3069729 [No Abstract] [Full Text] [Related]
33. Oncogenes and anti-oncogenes in human central nervous system tumors. Batra SK; Rasheed BK; Bigner SH; Bigner DD Lab Invest; 1994 Nov; 71(5):621-37. PubMed ID: 7967518 [No Abstract] [Full Text] [Related]
34. Molecular mechanisms involved in human B and T cell neoplasia. Croce CM; Tsujimoto Y; Nowell PC Gene Amplif Anal; 1986; 4():143-60. PubMed ID: 3146545 [No Abstract] [Full Text] [Related]