These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
428 related articles for article (PubMed ID: 30697728)
61. Curcumin-cyclodextrin encapsulated chitosan nanoconjugates with enhanced solubility and cell cytotoxicity. Popat A; Karmakar S; Jambhrunkar S; Xu C; Yu C Colloids Surf B Biointerfaces; 2014 May; 117():520-7. PubMed ID: 24698148 [TBL] [Abstract][Full Text] [Related]
62. Oral delivery of curcumin bound to chitosan nanoparticles cured Plasmodium yoelii infected mice. Akhtar F; Rizvi MM; Kar SK Biotechnol Adv; 2012; 30(1):310-20. PubMed ID: 21619927 [TBL] [Abstract][Full Text] [Related]
63. Conundrum and therapeutic potential of curcumin in drug delivery. Kumar A; Ahuja A; Ali J; Baboota S Crit Rev Ther Drug Carrier Syst; 2010; 27(4):279-312. PubMed ID: 20932240 [TBL] [Abstract][Full Text] [Related]
64. Curcumin-loaded solid lipid nanoparticles have prolonged in vitro antitumour activity, cellular uptake and improved in vivo bioavailability. Sun J; Bi C; Chan HM; Sun S; Zhang Q; Zheng Y Colloids Surf B Biointerfaces; 2013 Nov; 111():367-75. PubMed ID: 23856543 [TBL] [Abstract][Full Text] [Related]
65. Development of Enteromorpha prolifera polysaccharide-based nanoparticles for delivery of curcumin to cancer cells. Li J; Jiang F; Chi Z; Han D; Yu L; Liu C Int J Biol Macromol; 2018 Jun; 112():413-421. PubMed ID: 29410267 [TBL] [Abstract][Full Text] [Related]
66. Phytosomal curcumin: A review of pharmacokinetic, experimental and clinical studies. Mirzaei H; Shakeri A; Rashidi B; Jalili A; Banikazemi Z; Sahebkar A Biomed Pharmacother; 2017 Jan; 85():102-112. PubMed ID: 27930973 [TBL] [Abstract][Full Text] [Related]
67. Inducing sustained release and improving oral bioavailability of curcumin via chitosan derivatives-coated liposomes. Tian MP; Song RX; Wang T; Sun MJ; Liu Y; Chen XG Int J Biol Macromol; 2018 Dec; 120(Pt A):702-710. PubMed ID: 30170061 [TBL] [Abstract][Full Text] [Related]
68. Hybrid liposomes composed of amphiphilic chitosan and phospholipid: Preparation, stability and bioavailability as a carrier for curcumin. Peng S; Zou L; Liu W; Li Z; Liu W; Hu X; Chen X; Liu C Carbohydr Polym; 2017 Jan; 156():322-332. PubMed ID: 27842829 [TBL] [Abstract][Full Text] [Related]
69. Prospects of Curcumin Nanoformulations in Cancer Management. Amekyeh H; Alkhader E; Sabra R; Billa N Molecules; 2022 Jan; 27(2):. PubMed ID: 35056675 [TBL] [Abstract][Full Text] [Related]
70. Alginate and Chitosan-Based Delivery Systems for Improving the Bioavailability and Therapeutic Efficacy of Curcumin. Sable AA; Kunwar A; Barik A Pharmaceutics; 2024 Mar; 16(3):. PubMed ID: 38543316 [TBL] [Abstract][Full Text] [Related]
71. Co-encapsulation of Egg-White-Derived Peptides (EWDP) and Curcumin within the Polysaccharide-Based Amphiphilic Nanoparticles for Promising Oral Bioavailability Enhancement: Role of EWDP. Yang M; Liu J; Li Y; Yang Q; Liu C; Liu X; Zhang B; Zhang H; Zhang T; Du Z J Agric Food Chem; 2022 Apr; 70(16):5126-5136. PubMed ID: 35412315 [TBL] [Abstract][Full Text] [Related]
72. Novel magneto-responsive nanoplatforms based on MnFe Jardim KV; Palomec-Garfias AF; Andrade BYG; Chaker JA; Báo SN; Márquez-Beltrán C; Moya SE; Parize AL; Sousa MH Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():184-195. PubMed ID: 30184741 [TBL] [Abstract][Full Text] [Related]
73. Improved oral delivery of resveratrol from N-trimethyl chitosan-g-palmitic acid surface-modified solid lipid nanoparticles. Ramalingam P; Ko YT Colloids Surf B Biointerfaces; 2016 Mar; 139():52-61. PubMed ID: 26700233 [TBL] [Abstract][Full Text] [Related]
74. Enhancement of anticancer activity and drug delivery of chitosan-curcumin nanoparticle via molecular docking and simulation analysis. Yadav P; Bandyopadhyay A; Chakraborty A; Sarkar K Carbohydr Polym; 2018 Feb; 182():188-198. PubMed ID: 29279114 [TBL] [Abstract][Full Text] [Related]
75. Layer-by-layer assembled thin films and microcapsules of nanocrystalline cellulose for hydrophobic drug delivery. Mohanta V; Madras G; Patil S ACS Appl Mater Interfaces; 2014 Nov; 6(22):20093-101. PubMed ID: 25338530 [TBL] [Abstract][Full Text] [Related]
76. Chitosan microparticles for oral bioavailability improvement of the hydrophobic drug curcumin. Wan S; Sun Y; Sun L; Tan F Pharmazie; 2012 Jun; 67(6):525-8. PubMed ID: 22822541 [TBL] [Abstract][Full Text] [Related]
77. Curcumin drug delivery by vanillin-chitosan coated with calcium ferrite hybrid nanoparticles as carrier. Kamaraj S; Palanisamy UM; Kadhar Mohamed MSB; Gangasalam A; Maria GA; Kandasamy R Eur J Pharm Sci; 2018 Apr; 116():48-60. PubMed ID: 29355595 [TBL] [Abstract][Full Text] [Related]
78. Nanoparticles based on chitosan hydrochloride/hyaluronic acid/PEG containing curcumin: In vitro evaluation and pharmacokinetics in rats. Xu Y; Asghar S; Yang L; Chen Z; Li H; Shi W; Li Y; Shi Q; Ping Q; Xiao Y Int J Biol Macromol; 2017 Sep; 102():1083-1091. PubMed ID: 28472690 [TBL] [Abstract][Full Text] [Related]
79. Enhancing Curcumin Oral Bioavailability Through Nanoformulations. Ipar VS; Dsouza A; Devarajan PV Eur J Drug Metab Pharmacokinet; 2019 Aug; 44(4):459-480. PubMed ID: 30771095 [TBL] [Abstract][Full Text] [Related]