BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 30697732)

  • 1. Shared and differential features of Robo3 expression pattern in amniotes.
    Friocourt F; Kozulin P; Belle M; Suárez R; Di-Poï N; Richards LJ; Giacobini P; Chédotal A
    J Comp Neurol; 2019 Aug; 527(12):2009-2029. PubMed ID: 30697732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diverse spinal commissural neuron populations revealed by fate mapping and molecular profiling using a novel Robo3
    Tulloch AJ; Teo S; Carvajal BV; Tessier-Lavigne M; Jaworski A
    J Comp Neurol; 2019 Dec; 527(18):2948-2972. PubMed ID: 31152445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensory and spinal inhibitory dorsal midline crossing is independent of Robo3.
    Comer JD; Pan FC; Willet SG; Haldipur P; Millen KJ; Wright CV; Kaltschmidt JA
    Front Neural Circuits; 2015; 9():36. PubMed ID: 26257608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Robo3 receptor, a key player in the development, evolution, and function of commissural systems.
    Friocourt F; Chédotal A
    Dev Neurobiol; 2017 Jul; 77(7):876-890. PubMed ID: 28033646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Post-crossing segment of dI1 commissural axons forms collateral branches to motor neurons in the developing spinal cord.
    Kaneyama T; Shirasaki R
    J Comp Neurol; 2018 Aug; 526(12):1943-1961. PubMed ID: 29752714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HOXA5 localization in postnatal and adult mouse brain is suggestive of regulatory roles in postmitotic neurons.
    Lizen B; Hutlet B; Bissen D; Sauvegarde D; Hermant M; Ahn MT; Gofflot F
    J Comp Neurol; 2017 Apr; 525(5):1155-1175. PubMed ID: 27650319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signaling switch of the axon guidance receptor Robo3 during vertebrate evolution.
    Zelina P; Blockus H; Zagar Y; Péres A; Friocourt F; Wu Z; Rama N; Fouquet C; Hohenester E; Tessier-Lavigne M; Schweitzer J; Roest Crollius H; Chédotal A
    Neuron; 2014 Dec; 84(6):1258-72. PubMed ID: 25433640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interstitial branch formation within the red nucleus by deep cerebellar nuclei-derived commissural axons during target recognition.
    Hara S; Kaneyama T; Inamata Y; Onodera R; Shirasaki R
    J Comp Neurol; 2016 Apr; 524(5):999-1014. PubMed ID: 26356789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nogo-B is the major form of Nogo at the floor plate and likely mediates crossing of commissural axons in the mouse spinal cord.
    Wang L; Yu C; Wang J; Leung P; Ma D; Zhao H; Taylor JSH; Chan SO
    J Comp Neurol; 2017 Sep; 525(13):2915-2928. PubMed ID: 28543060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amphibian thalamic nuclear organization during larval development and in the adult frog Xenopus laevis: Genoarchitecture and hodological analysis.
    Morona R; Bandín S; López JM; Moreno N; González A
    J Comp Neurol; 2020 Oct; 528(14):2361-2403. PubMed ID: 32162311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Refinement of the dopaminergic system of anuran amphibians based on connectivity with habenula, basal ganglia, limbic system, pallium, and spinal cord.
    Freudenmacher L; Schauer M; Walkowiak W; von Twickel A
    J Comp Neurol; 2020 Apr; 528(6):972-988. PubMed ID: 31617943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variations in the proliferative activity of the peripheral retina correlate with postnatal ocular growth in squamate reptiles.
    Eymann J; Salomies L; Macrì S; Di-Poï N
    J Comp Neurol; 2019 Oct; 527(14):2356-2370. PubMed ID: 30860599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crucial roles of Robo proteins in midline crossing of cerebellofugal axons and lack of their up-regulation after midline crossing.
    Tamada A; Kumada T; Zhu Y; Matsumoto T; Hatanaka Y; Muguruma K; Chen Z; Tanabe Y; Torigoe M; Yamauchi K; Oyama H; Nishida K; Murakami F
    Neural Dev; 2008 Nov; 3():29. PubMed ID: 18986510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robo family of proteins exhibit differential expression in mouse spinal cord and Robo-Slit interaction is required for midline crossing in vertebrate spinal cord.
    Mambetisaeva ET; Andrews W; Camurri L; Annan A; Sundaresan V
    Dev Dyn; 2005 May; 233(1):41-51. PubMed ID: 15768400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Operational redundancy in axon guidance through the multifunctional receptor Robo3 and its ligand NELL2.
    Jaworski A; Tom I; Tong RK; Gildea HK; Koch AW; Gonzalez LC; Tessier-Lavigne M
    Science; 2015 Nov; 350(6263):961-5. PubMed ID: 26586761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The related neuronal endosomal proteins NEEP21 (Nsg1) and P19 (Nsg2) have divergent expression profiles in vivo.
    Barford K; Yap CC; Dwyer ND; Winckler B
    J Comp Neurol; 2017 Jun; 525(8):1861-1878. PubMed ID: 28299779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crossing the midline: roles and regulation of Robo receptors.
    Rajagopalan S; Nicolas E; Vivancos V; Berger J; Dickson BJ
    Neuron; 2000 Dec; 28(3):767-77. PubMed ID: 11163265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robo3.1A suppresses slit-mediated repulsion by triggering degradation of Robo2.
    Li L; Liu S; Lei Y; Cheng Y; Yao C; Zhen X
    J Neurosci Res; 2014 Jul; 92(7):835-46. PubMed ID: 24936616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene expression analysis of developing cell groups in the pretectal region of Xenopus laevis.
    Morona R; Ferran JL; Puelles L; González A
    J Comp Neurol; 2017 Mar; 525(4):715-752. PubMed ID: 27539385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental expression of Neuregulin-3 in the rat central nervous system.
    Rahman A; Weber J; Labin E; Lai C; Prieto AL
    J Comp Neurol; 2019 Mar; 527(4):797-817. PubMed ID: 30328115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.