These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 3069842)
1. Propioxatins A and B, new enkephalinase B inhibitors. IV. Characterization of the active site of the enzyme using synthetic propioxatin analogues. Inaoka Y; Naruto S J Biochem; 1988 Nov; 104(5):706-11. PubMed ID: 3069842 [TBL] [Abstract][Full Text] [Related]
2. Enkephalin-degrading dipeptidylaminopeptidase: characterization of the active site and selective inhibition. Chérot P; Devin J; Fournié-Zaluski MC; Roques BP Mol Pharmacol; 1986 Oct; 30(4):338-44. PubMed ID: 3531805 [TBL] [Abstract][Full Text] [Related]
3. Propioxatins A and B, new enkephalinase B inhibitors. III. Total synthesis of propioxatin A. Inaoka Y; Takahashi S; Sato S J Antibiot (Tokyo); 1986 Oct; 39(10):1382-5. PubMed ID: 3781908 [TBL] [Abstract][Full Text] [Related]
4. Effect of various enkephalin analogs and dipeptides on the enzymatic activity of enkephalinase B isolated from calf-brain striatum. van Amsterdam JG; van Buuren KJ; Koomen AP; Soudijn W Life Sci; 1986 Mar; 38(12):1111-8. PubMed ID: 3515091 [TBL] [Abstract][Full Text] [Related]
5. Propioxatins A and B, new enkephalinase B inhibitors. I. Taxonomy, fermentation, isolation and biological properties. Inaoka Y; Tamaoki H; Takahashi S; Enokita R; Okazaki T J Antibiot (Tokyo); 1986 Oct; 39(10):1368-77. PubMed ID: 3536826 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of enkephalinase B inhibitors, and their activity on isolated enkephalin-degrading enzymes. Van Amsterdam JG; Van Buuren KJ; Blad MW; Soudijn W Eur J Pharmacol; 1987 Mar; 135(3):411-8. PubMed ID: 3556201 [TBL] [Abstract][Full Text] [Related]
7. Inhibitors of calf-brain enkephalinase A and B. van Amsterdam JG; van Buuren KJ; de Jong AM; Soudijn W Life Sci; 1983; 33 Suppl 1():109-12. PubMed ID: 6363851 [TBL] [Abstract][Full Text] [Related]
8. Purification and characterization of enkephalinase B from rat brain membrane. Inaoka Y; Tamaoki H Biochim Biophys Acta; 1987 Jul; 925(1):27-35. PubMed ID: 3297170 [TBL] [Abstract][Full Text] [Related]
9. Differential recognition of "enkephalinase" and angiotensin-converting enzyme by new carboxyalkyl inhibitors. Fournié-Zaluski MC; Soroca-Lucas E; Waksman G; Llorens C; Schwartz JC; Roques BP Life Sci; 1982 Dec; 31(26):2947-54. PubMed ID: 6298535 [TBL] [Abstract][Full Text] [Related]
10. Bidentate peptides: highly potent new inhibitors of enkephalin degrading enzymes. Bouboutou R; Waksman G; Devin J; Fournié-Zaluski MC; Roques BP Life Sci; 1984 Aug; 35(9):1023-30. PubMed ID: 6088932 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the P2' and P3' specificities of thrombin using fluorescence-quenched substrates and mapping of the subsites by mutagenesis. Le Bonniec BF; Myles T; Johnson T; Knight CG; Tapparelli C; Stone SR Biochemistry; 1996 Jun; 35(22):7114-22. PubMed ID: 8679538 [TBL] [Abstract][Full Text] [Related]
12. Analysis of the S3 and S3' subsite specificities of feline immunodeficiency virus (FIV) protease: development of a broad-based protease inhibitor efficacious against FIV, SIV, and HIV in vitro and ex vivo. Lee T; Laco GS; Torbett BE; Fox HS; Lerner DL; Elder JH; Wong CH Proc Natl Acad Sci U S A; 1998 Feb; 95(3):939-44. PubMed ID: 9448264 [TBL] [Abstract][Full Text] [Related]
13. Differences in the structural requirements for selective interaction with neutral metalloendopeptidase (enkephalinase) or angiotensin-converting enzyme. Molecular investigation by use of new thiol inhibitors. Fournie-Zaluski MC; Lucas E; Waksman G; Roques BP Eur J Biochem; 1984 Mar; 139(2):267-74. PubMed ID: 6321177 [TBL] [Abstract][Full Text] [Related]
14. Propioxatins A and B, new enkephalinase B inhibitors. II. Structural elucidation. Inaoka Y; Takahashi S; Kinoshita T J Antibiot (Tokyo); 1986 Oct; 39(10):1378-81. PubMed ID: 3781907 [TBL] [Abstract][Full Text] [Related]
15. Labelling and exploration of the active site of enkephalinase (EC 3.4.24.11) in kidney membranes with [3H]thiorphan as ligand. De la Baume S; Schwartz JC Eur J Pharmacol; 1988 Apr; 149(1-2):121-9. PubMed ID: 3165067 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of human leukocyte elastase by N-substituted peptides containing alpha,alpha-difluorostatone residues at P1. Skiles JW; Miao C; Sorcek R; Jacober S; Mui PW; Chow G; Weldon SM; Possanza G; Skoog M; Keirns J J Med Chem; 1992 Dec; 35(26):4795-808. PubMed ID: 1479581 [TBL] [Abstract][Full Text] [Related]
17. Phosphoramidate peptide inhibitors of human skin fibroblast collagenase. Kortylewicz ZP; Galardy RE J Med Chem; 1990 Jan; 33(1):263-73. PubMed ID: 2153207 [TBL] [Abstract][Full Text] [Related]
18. Cleavage efficiency of the novel aspartic protease yapsin 1 (Yap3p) enhanced for substrates with arginine residues flanking the P1 site: correlation with electronegative active-site pockets predicted by molecular modeling. Olsen V; Guruprasad K; Cawley NX; Chen HC; Blundell TL; Loh YP Biochemistry; 1998 Mar; 37(9):2768-77. PubMed ID: 9485427 [TBL] [Abstract][Full Text] [Related]
19. Complete differentiation between enkephalinase and angiotensin-converting enzyme inhibition by retro-thiorphan. Roques BP; Lucas-Soroca E; Chaillet P; Costentin J; Fournié-Zaluski MC Proc Natl Acad Sci U S A; 1983 Jun; 80(11):3178-82. PubMed ID: 6304695 [TBL] [Abstract][Full Text] [Related]
20. Substrate-related potent inhibitors of brain metalloendopeptidase. Orlowski M; Michaud C; Molineaux CJ Biochemistry; 1988 Jan; 27(2):597-602. PubMed ID: 3162384 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]