BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 30698852)

  • 1. Strategies for Substrate-Regulated P450 Catalysis: From Substrate Engineering to Co-catalysis.
    Xu J; Wang C; Cong Z
    Chemistry; 2019 May; 25(28):6853-6863. PubMed ID: 30698852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling substrate specificity and product regio- and stereo-selectivities of P450 enzymes without mutagenesis.
    Polic V; Auclair K
    Bioorg Med Chem; 2014 Oct; 22(20):5547-54. PubMed ID: 25035263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering cytochrome P450 enzyme systems for biomedical and biotechnological applications.
    Li Z; Jiang Y; Guengerich FP; Ma L; Li S; Zhang W
    J Biol Chem; 2020 Jan; 295(3):833-849. PubMed ID: 31811088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emerging Strategies for Modifying Cytochrome P450 Monooxygenases into Peroxizymes.
    Fan S; Cong Z
    Acc Chem Res; 2024 Jan; ():. PubMed ID: 38293787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the molecular basis for substrate specificity in homologous macrolide biosynthetic cytochromes P450.
    DeMars MD; Samora NL; Yang S; Garcia-Borràs M; Sanders JN; Houk KN; Podust LM; Sherman DH
    J Biol Chem; 2019 Nov; 294(44):15947-15961. PubMed ID: 31488542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-sufficient P450-reductase chimeras for biocatalysis.
    Stout CN; Renata H
    Methods Enzymol; 2023; 693():51-71. PubMed ID: 37977738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocatalytic oxidative cross-coupling reactions for biaryl bond formation.
    Zetzsche LE; Yazarians JA; Chakrabarty S; Hinze ME; Murray LAM; Lukowski AL; Joyce LA; Narayan ARH
    Nature; 2022 Mar; 603(7899):79-85. PubMed ID: 35236972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Mechanistic Understanding of the Distinct Regio- and Chemoselectivity of Multifunctional P450s by Structural Comparison of IkaD and CftA Complexed with Common Substrates.
    Jiang P; Jin H; Zhang G; Zhang W; Liu W; Zhu Y; Zhang C; Zhang L
    Angew Chem Int Ed Engl; 2023 Dec; 62(51):e202310728. PubMed ID: 37917570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversity of P450 enzymes in the biosynthesis of natural products.
    Podust LM; Sherman DH
    Nat Prod Rep; 2012 Oct; 29(10):1251-66. PubMed ID: 22820933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial P450 repertoire (P450ome) and its application feasibility in pharmaceutical industry, chemical industry, and environmental protection.
    Wang Y; Pan H; Wang F; Shen C
    Biotechnol Bioeng; 2024 Jan; 121(1):7-25. PubMed ID: 37767638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A one-pot Pd- and P450-catalyzed chemoenzymatic synthesis of a library of oxyfunctionalized biaryl alkanoic acids leveraging a substrate anchoring approach.
    Kato M; Huynh M; Chan N; Elliott J; Trinh A; Lucero K; Vu J; Parker D; Cheruzel LE
    J Inorg Biochem; 2023 Aug; 245():112240. PubMed ID: 37245283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled oxidation of remote sp3 C-H bonds in artemisinin via P450 catalysts with fine-tuned regio- and stereoselectivity.
    Zhang K; Shafer BM; Demars MD; Stern HA; Fasan R
    J Am Chem Soc; 2012 Nov; 134(45):18695-704. PubMed ID: 23121379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical and Structural Characterization of MycCI, a Versatile P450 Biocatalyst from the Mycinamicin Biosynthetic Pathway.
    DeMars MD; Sheng F; Park SR; Lowell AN; Podust LM; Sherman DH
    ACS Chem Biol; 2016 Sep; 11(9):2642-54. PubMed ID: 27420774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the applicability of the CYP102A1-decoy-molecule system to other members of the CYP102A subfamily.
    Stanfield JK; Onoda H; Ariyasu S; Kasai C; Burfoot EM; Sugimoto H; Shoji O
    J Inorg Biochem; 2023 Aug; 245():112235. PubMed ID: 37167731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective Enzymatic Oxidation of Silanes to Silanols.
    Bähr S; Brinkmann-Chen S; Garcia-Borràs M; Roberts JM; Katsoulis DE; Houk KN; Arnold FH
    Angew Chem Int Ed Engl; 2020 Sep; 59(36):15507-15511. PubMed ID: 32212229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data-Driven Protein Engineering for Improving Catalytic Activity and Selectivity.
    Ao YF; Dörr M; Menke MJ; Born S; Heuson E; Bornscheuer UT
    Chembiochem; 2024 Feb; 25(3):e202300754. PubMed ID: 38029350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expanding the Substrate Scope of Nitrating Cytochrome P450 TxtE by Active Site Engineering of a Reductase Fusion.
    Saroay R; Roiban GD; Alkhalaf LM; Challis GL
    Chembiochem; 2021 Jul; 22(13):2262-2265. PubMed ID: 33851500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Promiscuous Cytochrome P450 Hydroxylates Aliphatic and Aromatic C-H Bonds of Aromatic 2,5-Diketopiperazines.
    Jiang G; Zhang Y; Powell MM; Hylton SM; Hiller NW; Loria R; Ding Y
    Chembiochem; 2019 Apr; 20(8):1068-1077. PubMed ID: 30604585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anchoring a Structurally Editable Proximal Cofactor-like Module to Construct an Artificial Dual-center Peroxygenase.
    Qin X; Jiang Y; Yao F; Chen J; Kong F; Zhao P; Jin L; Cong Z
    Angew Chem Int Ed Engl; 2023 Dec; 62(51):e202311259. PubMed ID: 37713467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of active-site Phe87 in modulating the organic co-solvent tolerance of cytochrome P450 BM3 monooxygenase.
    Kuper J; Tee KL; Wilmanns M; Roccatano D; Schwaneberg U; Wong TS
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2012 Sep; 68(Pt 9):1013-7. PubMed ID: 22949185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.