BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 30698852)

  • 21. Hijacking Chemical Reactions of P450 Enzymes for Altered Chemical Reactions and Asymmetric Synthesis.
    Rajakumara E; Saniya D; Bajaj P; Rajeshwari R; Giri J; Davari MD
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613657
    [TBL] [Abstract][Full Text] [Related]  

  • 22. P450 fingerprinting method for rapid discovery of terpene hydroxylating P450 catalysts with diversified regioselectivity.
    Zhang K; El Damaty S; Fasan R
    J Am Chem Soc; 2011 Mar; 133(10):3242-5. PubMed ID: 21341707
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cytochrome P450 monooxygenases: perspectives for synthetic application.
    Urlacher VB; Eiben S
    Trends Biotechnol; 2006 Jul; 24(7):324-30. PubMed ID: 16759725
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of an improved Amplex Red peroxidation activity assay for screening cytochrome P450 variants and identification of a novel mutant of the thermophilic CYP119.
    Başlar MS; Sakallı T; Güralp G; Kestevur Doğru E; Haklı E; Surmeli NB
    J Biol Inorg Chem; 2020 Oct; 25(7):949-962. PubMed ID: 32924072
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simulation-Guided Design of Cytochrome P450 for Chemo- and Regioselective Macrocyclic Oxidation.
    Petrović D; Bokel A; Allan M; Urlacher VB; Strodel B
    J Chem Inf Model; 2018 Apr; 58(4):848-858. PubMed ID: 29522682
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Emerging Strategies for Modifying Cytochrome P450 Monooxygenases into Peroxizymes.
    Fan S; Cong Z
    Acc Chem Res; 2024 Jan; ():. PubMed ID: 38293787
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The evolution of cytochrome P450 enzymes as biocatalysts in drug discovery and development.
    Gillam EM; Hayes MA
    Curr Top Med Chem; 2013; 13(18):2254-80. PubMed ID: 24047135
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanistic Study of the Stereoselective Hydroxylation of [2-
    Yang CL; Lin CH; Luo WI; Lee TL; Ramu R; Ng KY; Tsai YF; Wei GT; Yu SS
    Chemistry; 2017 Feb; 23(11):2571-2582. PubMed ID: 27798822
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An integrated screening system for the selection of exemplary substrates for natural and engineered cytochrome P450s.
    Kanoh N; Kawamata-Asano A; Suzuki K; Takahashi Y; Miyazawa T; Nakamura T; Moriya T; Hirano H; Osada H; Iwabuchi Y; Takahashi S
    Sci Rep; 2019 Dec; 9(1):18023. PubMed ID: 31792277
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Applications of microbial cytochrome P450 enzymes in biotechnology and synthetic biology.
    Girvan HM; Munro AW
    Curr Opin Chem Biol; 2016 Apr; 31():136-45. PubMed ID: 27015292
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cluster screening: an effective approach for probing the substrate space of uncharacterized cytochrome P450s.
    von Bühler C; Le-Huu P; Urlacher VB
    Chembiochem; 2013 Nov; 14(16):2189-98. PubMed ID: 24115388
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cytochrome P450: taming a wild type enzyme.
    Jung ST; Lauchli R; Arnold FH
    Curr Opin Biotechnol; 2011 Dec; 22(6):809-17. PubMed ID: 21411308
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Substrate binding to cytochromes P450.
    Isin EM; Guengerich FP
    Anal Bioanal Chem; 2008 Nov; 392(6):1019-30. PubMed ID: 18622598
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploring the potential of xenobiotic-metabolising enzymes as biocatalysts: evolving designer catalysts from polyfunctional cytochrome P450 enzymes.
    Gillam EM
    Clin Exp Pharmacol Physiol; 2005 Mar; 32(3):147-52. PubMed ID: 15743395
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expanding P450 catalytic reaction space through evolution and engineering.
    McIntosh JA; Farwell CC; Arnold FH
    Curr Opin Chem Biol; 2014 Apr; 19():126-34. PubMed ID: 24658056
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering bacterial cytochrome P450 (P450) BM3 into a prototype with human P450 enzyme activity using indigo formation.
    Park SH; Kim DH; Kim D; Kim DH; Jung HC; Pan JG; Ahn T; Kim D; Yun CH
    Drug Metab Dispos; 2010 May; 38(5):732-9. PubMed ID: 20100815
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression, purification, and characterization of Bacillus subtilis cytochromes P450 CYP102A2 and CYP102A3: flavocytochrome homologues of P450 BM3 from Bacillus megaterium.
    Gustafsson MC; Roitel O; Marshall KR; Noble MA; Chapman SK; Pessegueiro A; Fulco AJ; Cheesman MR; von Wachenfeldt C; Munro AW
    Biochemistry; 2004 May; 43(18):5474-87. PubMed ID: 15122913
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extending the capabilities of nature's most versatile catalysts: directed evolution of mammalian xenobiotic-metabolizing P450s.
    Gillam EM
    Arch Biochem Biophys; 2007 Aug; 464(2):176-86. PubMed ID: 17537393
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential behavior of the sub-sites of cytochrome 450 active site in binding of substrates, and products (implications for coupling/uncoupling).
    Narasimhulu S
    Biochim Biophys Acta; 2007 Mar; 1770(3):360-75. PubMed ID: 17134838
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering cytochrome P450 biocatalysts for biotechnology, medicine and bioremediation.
    Kumar S
    Expert Opin Drug Metab Toxicol; 2010 Feb; 6(2):115-31. PubMed ID: 20064075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.