BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 30698911)

  • 21. A versatile methodology for the controlled synthesis of photoluminescent high-boron-content dendrimers.
    González-Campo A; Ferrer-Ugalde A; Viñas C; Teixidor F; Sillanpää R; Rodríguez-Romero J; Santillan R; Farfán N; Núñez R
    Chemistry; 2013 May; 19(20):6299-312. PubMed ID: 23494750
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 2-Phenylpyridine- and 2-(benzo[b]thiophen-2-yl)pyridine-based o-carboranyl compounds: impact of the structural formation of aromatic rings on photophysical properties.
    Jin H; Bae HJ; Kim S; Lee JH; Hwang H; Park MH; Lee KM
    Dalton Trans; 2019 Jan; 48(4):1467-1476. PubMed ID: 30631864
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Precise Modulation of Intramolecular Aggregation-induced Electrochemiluminescence by Tetraphenylethylene-based Supramolecular Architectures.
    Zhu Z; Zeng C; Zhao Y; Ma J; Yao X; Huo S; Feng Y; Wang M; Lu X
    Angew Chem Int Ed Engl; 2023 Nov; 62(46):e202312692. PubMed ID: 37747050
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Green and blue electrochemically generated chemiluminescence from click chemistry--customizable iridium complexes.
    Zanarini S; Felici M; Valenti G; Marcaccio M; Prodi L; Bonacchi S; Contreras-Carballada P; Williams RM; Feiters MC; Nolte RJ; De Cola L; Paolucci F
    Chemistry; 2011 Apr; 17(16):4640-7. PubMed ID: 21433123
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anodic electrochemiluminescence of CdTe quantum dots and its energy transfer for detection of catechol derivatives.
    Liu X; Jiang H; Lei J; Ju H
    Anal Chem; 2007 Nov; 79(21):8055-60. PubMed ID: 17910416
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aggregation-Induced Enhanced Electrochemiluminescence from Organic Nanoparticles of Donor-Acceptor Based Coumarin Derivatives.
    Liu H; Wang L; Gao H; Qi H; Gao Q; Zhang C
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44324-44331. PubMed ID: 29171261
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strong Electrochemiluminescence Emission from Oxidized Multiwalled Carbon Nanotubes.
    Wang R; Wu H; Chen R; Chi Y
    Small; 2019 Nov; 15(48):e1901550. PubMed ID: 31115974
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tuning Dimensionality of Benzimidazole Aggregates by Using Tetraoctylammonium Bromide: Enhanced Electrochemiluminescence Studies.
    Dai YX; Li YX; Zhang XJ; Cosnier S; Shan D
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):6228-6233. PubMed ID: 36655778
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Substituent-Induced Aggregated State Electrochemiluminescence of Tetraphenylethene Derivatives.
    Han Z; Zhang Y; Wu Y; Li Z; Bai L; Huo S; Lu X
    Anal Chem; 2019 Jul; 91(13):8676-8682. PubMed ID: 31194510
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Silole-Containing Polymer Nanodot: An Aqueous Low-Potential Electrochemiluminescence Emitter for Biosensing.
    Feng Y; Dai C; Lei J; Ju H; Cheng Y
    Anal Chem; 2016 Jan; 88(1):845-50. PubMed ID: 26613322
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tetraphenylethylene-Carborane-Tetraphenylethylene Triad: Influence of Steric Bridge on Aggregation-Induced Emission Properties.
    Yin Y; Li X; Yan S; Yan H; Lu C
    Chem Asian J; 2018 Nov; 13(21):3155-3159. PubMed ID: 30133156
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strong Electrochemiluminescence from MOF Accelerator Enriched Quantum Dots for Enhanced Sensing of Trace cTnI.
    Yang X; Yu YQ; Peng LZ; Lei YM; Chai YQ; Yuan R; Zhuo Y
    Anal Chem; 2018 Mar; 90(6):3995-4002. PubMed ID: 29457712
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Facile electrochemiluminescence sensing platform based on water-soluble tungsten oxide quantum dots for ultrasensitive detection of dopamine released by cells.
    Peng H; Liu P; Wu W; Chen W; Meng X; Lin X; Liu A
    Anal Chim Acta; 2019 Aug; 1065():21-28. PubMed ID: 31005147
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In situ energy transfer quenching of quantum dot electrochemiluminescence for sensitive detection of cancer biomarkers.
    Yang M; Chen Y; Xiang Y; Yuan R; Chai Y
    Biosens Bioelectron; 2013 Dec; 50():393-8. PubMed ID: 23891869
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel electrochemiluminescence sensor based on resonance energy transfer system between nitrogen doped graphene quantum dots and boron nitride quantum dots for sensitive detection of folic acid.
    Li M; Wang C; Chen L; Liu D
    Anal Chim Acta; 2019 Dec; 1090():57-63. PubMed ID: 31655646
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coreactant enhanced anodic electrochemiluminescence of CdTe quantum dots at low potential for sensitive biosensing amplified by enzymatic cycle.
    Liu X; Ju H
    Anal Chem; 2008 Jul; 80(14):5377-82. PubMed ID: 18522432
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Grand Avenue to Au Nanocluster Electrochemiluminescence.
    Hesari M; Ding Z
    Acc Chem Res; 2017 Feb; 50(2):218-230. PubMed ID: 28080028
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis and Structure of an o-Carboranyl-Substituted Three-Coordinate Borane Radical Anion.
    Krebs J; Haehnel M; Krummenacher I; Friedrich A; Braunschweig H; Finze M; Ji L; Marder TB
    Chemistry; 2021 Jun; 27(31):8159-8167. PubMed ID: 33769625
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aggregation-Induced Emission (AIE) Dots: Emerging Theranostic Nanolights.
    Feng G; Liu B
    Acc Chem Res; 2018 Jun; 51(6):1404-1414. PubMed ID: 29733571
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aggregation-Induced Emission in Electrochemiluminescence: Advances and Perspectives.
    Moreno-Alcántar G; Aliprandi A; De Cola L
    Top Curr Chem (Cham); 2021 Jun; 379(4):31. PubMed ID: 34148139
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.